Electronic Supporting information

Supporting Information

fac-Re (CO)₃-based neutral heteroleptic tetrahedrons

Ramar Arumugam, Bhaskaran Shankar, K R Soumya, and Malaichamy Sathiyendiran*

Contents

- 1. Fig. S1a. Partial ¹H NMR spectrum of H_2 -RBC in dmso- d_6 .
- 2. **Fig. S1b.**¹H NMR spectrum of H_2 -**RBC** in dmso- d_6 .
- 3. Fig. S1c.¹H-¹H COSY NMR spectrum of H_2 -RBC in dmso- d_6 .
- 4. **Fig. S2a.** Partial ¹H NMR spectrum of L2 in dmso- d_6 .
- 5. **Fig. S2b.**¹H NMR spectrum of L2 in dmso- d_6 .
- 6. **Fig. S2c.** ¹H-¹H COSY NMR spectrum of L2 in dmso- d_6 .
- 7. Fig. S2d. ¹³C NMR spectrum of L2 in dmso- d_6 .
- 8. **Fig. S3a.** Partial ¹H NMR spectrum of L3 in dmso- d_6 .
- 9. **Fig. S3b.**¹H NMR spectrum of L3 in dmso- d_6 .
- 10. Fig. S3c. ¹H-¹H COSY NMR spectrum of L3 in dmso- d_6 .
- 11. **Fig. S3d.** ¹³C NMR spectrum of L3 in dmso- d_6 .
- 12. Fig. S4a. Partial ¹H NMR spectrum of L4 in dmso- d_6 .
- 13. Fig. S4b. ¹H NMR spectrum of L4 in dmso- d_6 .
- 14. Fig. S4c. ¹H-¹H COSY NMR spectrum of L4 in dmso- d_6 .
- 15. Fig. S4d. ¹³C NMR spectrum of L4 in dmso- d_6 .
- 16. Fig. S5a. Partial ¹H NMR spectrum of L5 in dmso- d_6 .
- 17. Fig. S5b. ¹H NMR spectrum of L5 in dmso- d_6 .
- 18. Fig. S5c. ¹H-¹H COSY NMR spectrum of L5 in dmso- d_6 .
- 19. Fig. S6. ESI mass spectrum of H₂-RBC in positive ion mode.
- 20. Fig. S7. ESI mass spectrum of L2 in positive ion mode.
- 21. Fig. S8. ESI mass spectrum of L3 in positive ion mode.
- 22. Fig. S9. ESI mass spectrum of L4 in positive ion mode.

- 23. Fig. S10. ESI mass spectrum of L5 in positive ion mode.
- 24. Fig. S11a. ¹H NMR spectrum of 1 in dmso- d_6 .
- 25. Fig. S11b. Partial ¹H NMR spectrum of 1 in dmso- d_6 (* indicates free ligand).
- 26. Fig. S11C. ¹H NMR spectra of L1 (blue), H₂-RBC (red) and 1(green) in dmso-d₆.
- 27. Fig. S12a. ¹H NMR spectrum of 2 in dmso- d_6 .
- 28. Fig. S12b. Partial ¹H NMR spectrum of 2 in dmso- d_6 (* indicates free ligand).
- 29. Fig. S12C. ¹H NMR spectra of L2 (blue), H₂-RBC (red) and 2(green) in dmso-d₆.
- 30. Fig. S13a. ¹H NMR spectrum of 4 in dmso- d_6 .
- 31. **Fig. S13b.** Partial ¹H NMR spectrum of **4** in dmso- d_6 .
- 32. Fig. S13C. ¹H NMR spectra of L4 (blue), H₂-RBC (red) and 4(green) in dmso-d₆.
- 33. Fig. S14a. ESI mass spectrum of 1 in positive ion mode.
- 34. Fig. S14b. ESI mass spectrum of 1 in positive ion mode.
- 35. Fig. S14c. Experimental (a) and calculated (b) ESI-TOF mass spectra of [1+H]⁺.
- 36. Fig. S15a. ESI mass spectrum of 2 in positive ion mode.
- 37. Fig. S15b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [2+H]⁺.
- 38. Fig. S16a. ESI mass spectrum of 3 in positive ion mode.
- 39. Fig. S16b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [3+H]⁺.
- 40. Fig. S17a. ESI mass spectrum of 4 in positive ion mode.
- 41. Fig. S17b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [4+H]⁺.
- 42. Fig. S18a. ESI mass spectrum of 5 in positive ion mode.
- 43. Fig. S18b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [5+H]⁺.
- 44. Fig. S19. Elemental analysis of 1.
- 45. Fig. S20. Elemental analysis of 2.
- 46. Fig. S21. Elemental analysis of 3.
- 47. Fig. S22. Elemental analysis of 4.
- 48. Fig. S23. Elemental analysis of 5.

- 49. Table 1. Crystallographic Data of 1-5.
- 50. Fig. S24. Molecular structure of 2. Tetrahedral skeleton of 2 with four ligands aligned along the four edges (Re1-Re¹ and Re2-Re² for two dianionic bis-chelating (RBC²⁻) ligand motifs, Re1-Re2 and Re²-Re¹ for two L2 motifs, and Re1-Re² and Re2-Re¹ are the two missing edges) of the Re4 tetrahedron. (A) Ball and stick view of 2 (hydrogen atoms are omitted for clarity; bonds of L2 are shown in blue; bonds of chelating atoms of RBC are shown in red). (B) Space-filling view of 2. (C) 2 with chelating atoms (red), L2 (blue) to show the orientation of chelating units around metal cores. Color code: C = gray; N = blue; O = red; Re = green; CO = green in C).
- 51. Fig. S25. Molecular structure of 3. Tetrahedral skeleton of 3 with four ligands aligned along the four edges (Re1-Re2 and Re¹-Re² for two dianionic bis-chelating (RBC²⁻) ligand motifs, Re1-Re² and Re2-Re¹ for two L3 motifs, and Re1-Re¹ and Re2-Re² are the two missing edges) of the Re4 tetrahedron. (A) Ball and stick view of 3 (hydrogen atoms are omitted for clarity; bonds of L3 are shown in blue; bonds of chelating atoms of RBC are shown in red). (B) Space-filling view of 3. (C) Space-filling view of 3 showing cavity of face in which OCH₃ resides (D) 3 with chelating atoms (red), L3 (blue) to show the orientation of chelating units around metal cores. Color code: C = gray; N = blue; O = red; Re = green; CO = green in C).
- 52. Fig. S26. Molecular structure of 4. Bonds of L4 are shown in blue; bonds of chelating atoms of RBC are shown in red). Color code: C = gray; N = blue; O = red; $Re(CO)_3 = green)$.
- 53. Fig. S27. Molecular structure of 5. Tetrahedral skeleton of 5 with four ligands aligned along the four edges (Re¹-Re¹ and Re²-Re² for two dianionic bis-chelating (RBC²⁻) ligand motifs, Re¹-Re² and Re²-Re¹ for two L5 motifs, and Re¹-Re² and Re²-Re¹ are the two missing edges) of the Re4 tetrahedron. (A) Ball and stick view of 5 (hydrogen atoms are omitted for clarity; bonds of L5 are shown in blue; bonds of chelating atoms of RBC are shown in red). (B) Space-filling view of 5. (C) 5 with chelating atoms (red), L5 (blue) to show the orientation of chelating units around metal cores. Color code: C = gray; N = blue; O = red; Re = green; CO = green in C).
- 54. Fig. S28. Molecular structure of 1 showing size of tetrahedron edges.
- 55. Fig. S29. Molecular structure of 2 showing size of tetrahedron edges.
- 56. Fig. S30. Molecular structure of 3 showing size of tetrahedron edges.
- 57. Fig. S31. Molecular structure of 4 showing size of tetrahedron edges.
- 58. Fig. S32. Molecular structure of 5 showing size of tetrahedron edges.

Fig. S1a. Partial ¹H NMR spectrum of H_2 -RBC in dmso- d_6 .

Fig. S1b. ¹H NMR spectrum of H_2 -RBC in dmso- d_6 .

Fig. S1c. ¹H-¹H COSY NMR spectrum H_2 -RBC in dmso- d_6 .

Fig. S2a. Partial ¹H NMR spectrum of L2 in dmso- d_6 .

Fig. S2b. ¹H NMR spectrum of L2 in dmso- d_6 .

Fig. S2c. ¹H-¹H COSY NMR spectrum of L2 in dmso- d_6 .

Fig. S2d. ¹³C NMR spectrum of L2 in dmso- d_6 .

Fig. S3a. Partial ¹H NMR spectrum of L3 in dmso-*d*₆.

Fig. S3b. ¹H NMR spectrum of L3 in dmso- d_6 .

Fig. S3c. ¹H-¹H COSY NMR spectrum of L**3** in dmso- d_6 .

Fig. S3d. ¹³C NMR spectrum of L3 in dmso- d_6 .

Fig. S4a. Partial ¹H NMR spectrum of L4 in dmso-*d*₆.

Fig. S4b. ¹H NMR spectrum of L4 in dmso- d_6 .

Fig. S4c. ¹H-¹H COSY NMR spectrum of L4 in dmso- d_6 .

Fig. S4d. ¹³C NMR spectrum of L4 in dmso- d_6 .

Fig. S5a. Partial ¹H NMR spectrum of L5 in dmso- d_6 .

Fig. S5b. ¹H NMR spectrum of L5 in dmso- d_6 .

Fig. S5c. ¹H-¹H COSY NMR spectrum of L**5** in dmso- d_6 .

m/z

Fig. S6. ESI mass spectrum of H₂-RBC in positive ion mode.

Analysis Info

Analysis Name D:\Data\2017\DR. SATHIYENDIRAN\june\RA3-22.d Method tune_low_PosR.m Sample Name RA3-22-ACN Comment Acquisition Date 6/19/2017 11:19:23 AM

Operator Instrument Rajesh Vashisth

maXis 10138

Acquisition Parameter

Fig. S7. ESI mass spectrum of L2 in positive ion mode.

Analysis Info

Analysis Name D:\Data\2017\DR. SATHIYENDIRAN\june\RA3-23.d Method tune_low_PosR.m Sample Name RA3-23-ACN Comment Acquisition Date 6/19/2017 11:45:12 AM

Operator Instrument Rajesh Vashisth maXis 10138

Acquisition Parameter

Fig. S8. ESI mass spectrum of L3 in positive ion mode.

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\2017\DR. SATHIYENDIRAN\june\RA3-48.d tune_low_PosR.m RA3-48-ACN Acquisition Date 6/19/2017 12:17:25 PM

Operator Instrument Rajesh Vashisth maXis 10138

Fig. S9. ESI mass spectrum of L4 in positive ion mode.

Analysis Info

Analysis Name D:\Data\2017\DR. SATHIYENDIRAN\june\RA3-24.d Method tune low PosR.m Sample Name RA3-24-ACN Comment

Acquisition Date 6/19/2017 11:32:53 AM

Operator Instrument

Rajesh Vashisth maXis

10138

Fig. S10. ESI mass spectrum of L5 in positive ion mode.

Fig. S11a. ¹H NMR spectrum of 1 in dmso- d_6 .

Fig. S11b. Partial ¹H NMR spectrum of **1** in dmso- d_6 (* indicates free ligand).

Fig. S11C. ¹H NMR spectra of L1 (blue), H₂-RBC (red) and 1(green) in dmso-d₆.

Fig. S12a. ¹H NMR spectrum of 2 in dmso- d_6 .

Fig. S12b. Partial ¹H NMR spectrum of **2** in dmso- d_6 (* indicates free ligand).

Fig. S12C. ¹H NMR spectra of L2 (blue), H₂-RBC (red) and 2(green) in dmso-d₆.

Fig. S13a. ¹H NMR spectrum of 4 in dmso- d_6 .

Fig. S13b. Partial ¹H NMR spectrum of 4 in dmso- d_6 .

Fig. S13C. ¹H NMR spectra of L4 (blue), H₂-RBC (red) and 4(green) in dmso-d₆.

Analysis Info

Source Type

Focus

Acquisition Parameter

Analysis Name	D:\Data\2018\PROF MS\DEC\RA3-35.c
Method	tune_wide_Pos.m
Sample Name	RA3-35
Comment	

ESI

Not active

Acquisition Date 12/6/2018 11:43:43 AM

Operator Instrument

UOH-Chemistry 10138 maXis

180 €C 4.0 l/min

Fig. S14a. ESI mass spectrum of 1 in positive ion mode.

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\2018\PROF MS\DEC\RA3-35.d tune_wide_Pos.m RA3-35

Acquisition Date 12/6/2018 11:43:43 AM

Operator Instrument UOH-Chemistry maXis 1

10138

Acquisition Parameter							
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar		
Focus	Not active	Set Capillary	3800 V	Set Dry Heater	180 €C		
Scan Begin	700 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min		
Scan End	3500 m/z	Set Collision Cell RF	2500.0 Vpp	Set Divert Valve	Source		

Fig. S14b. ESI mass spectrum of 1 in positive ion mode.

Fig. S14c. Experimental (a) and calculated (b) ESI-TOF mass spectra of [1+H]⁺.

Fig. S15a. ESI mass spectrum of 2 in positive ion mode.

Fig. S15b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [2+H]⁺.

Fig. S16a. ESI mass spectrum of 3 in positive ion mode.

Fig. S16b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [3+H]⁺.

Fig. S17a. ESI mass spectrum of 4 in positive ion mode.

Fig. S17b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [4+H]⁺.

Fig. S18a. ESI mass spectrum of 5 in positive ion mode.

Figure S18b. Experimental (a) and calculated (b) ESI-TOF mass spectra of [5+H]⁺.

Method filename: Sample ID: Analysis type: Chromatogram filename: Sample weight:

C:\Program Files\Thermo Finnigan\Eager 300 for EA1112\DATA\Sys_data_ex RA3-36 (# 45) UnkNown UNK-13062017-5.dat 1.223

Fig. S20. Elemental analysis of 2.

Fig. S21. Elemental analysis of 3.

Fig. S22. Elemental analysis of 4.

Fig. S23. Elemental analysis of 5.

	1	2	2 with solvents	4
formula	$C_{144}H_{92}N_{16}O_{16}Re_4$	$C_{148}H_{100}N_{16}O_{20}Re_4$	$C_{169}H_{123}N_{16}O_{20}Re_4$	$C_{156}H_{116}N_{16}O_{28}Re_4$
$M_{ m r}$	3047.13	3167.23	3442.63	3407.44
crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
space group	Pccn	Pccn	Pccn	Pbcn
<i>a</i> (Å)	18.7295(17)	19.1389(13)	19.1389(13)	20.942(2)
<i>b</i> (Å)	24.537(2)	24.4265(13)	24.4265(13)	23.014(2)
<i>c</i> (Å)	34.743(3)	35.133(2)	35.133(2)	34.149(3)
a(deg)	90	90	90	90
β (deg)	90	90	90	90
γ (deg)	90	90	90	90
$V(Å^3)$	15967(2)	16424.4(17)	16424.4(17)	16458(3)
Ζ	4	4	4	4
$T(\mathbf{K})$	296(2)	296(2)	296(2)	296(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073
D_{calc} (gcm ⁻³)	1.268	1.281	1.392	1.375
μ (mm ⁻¹)	3.080	2.999	3.005	3.001
<i>F</i> (000)	5984	6240	6836	6752
goodness- of-fit	1.052	1.056	1.140	1.106
$\frac{R1^{a}/wR2^{b}}{[I > 2\sigma(I)]}$	0.0562/0.1130	0.0845	0.0981/0.2266	0.0858/0.1538
$\frac{R1^{a}/wR2^{b}}{(all data)}$	0.1056/0.1408	0.2128	0.1756/0.2685	0.1358/0.1718
Larg. Res. (e Å ⁻³)	1.858	2.051	2.216	1.560
${}^{\mathrm{a}}R_{1} = \sum$	$\frac{ F_o - F_c }{\sum} F_o = \frac{ F_o }{\sum} F$	$\overline{V_o} \mid . \ \overline{^b wR_2} = \{ \sum [w($	$[F_o^2 - F_c^2)^2]/\sum$	$[w(F_o^2)^2]\}^{1/2}$

Table S1a. Crystallographic Data of 1, 2 and 4 (the parameters are calculated with/without the solvent molecules).

	3	3 with solvents	5	5 with solvents	
formula	$C_{166}H_{124}N_{16}O_{24}Re_4$	$C_{180}H_{140}N_{16}O_{24}Re_4$	$C_{148}H_{92}N_{16}O_{24}Re_4$	$C_{183}H_{90}N_{16}O_{24}Re_4$	
M _r	3471.6	3655.87	3223.17	3641.50	
crystal	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	
system					
space group	Pbcn	Pbcn	Pccn	Pccn	
<i>a</i> (Å)	20.820(3)	20.820(3)	18.7918(6)	18.7918(6)	
<i>b</i> (Å)	22.790(3)	22.790(3)	23.7918(7)	23.7918(7)	
<i>c</i> (Å)	33.942(4)	33.942(4)	35.3639(11)	35.3639(11)	
a(deg)	90	90	90	90	
β (deg)	90	90	90	90	
γ (deg)	90	90	90	90	
$V(Å^3)$	16106(4)	16106(4)	15810.9(8)	15810.9(8)	
Z	4	4	4	4	
<i>T</i> (K)	296(2)	296(2)	296(2)	296(2)	
λ (Å)	0.71073	0.71073	0.71073	0.71073	
D_{calc} (gcm ⁻ ³)	1.432	1.508	1.354	1.530	
μ (mm ⁻¹)	3.067	3.071	3.118	3.128	
F(000)	6896	7296	6336	7168	
goodness- of-fit	1.004	1.020	1.046	1.079	
$\frac{\text{R1}^{a}/\text{wR2}^{b}}{[I > 2\sigma(I)]}$	0.0543/0.1214	0.0570/0.1299	0.0369/0.0793	0.0484/0.1266	
$\frac{R1^{a}/wR2^{b}}{(all data)}$	0.1211/0.1594	0.1251/0.1696	0.0497/0.0858	0.0631/0.1379	
Larg. Res. ($e Å^{-3}$)	1.293	1.377	1.691	1.703	
${}^{a}R_{1} = \sum \left\ F_{o} \right\ - \left F_{c} \right\ / \sum \left F_{o} \right \cdot {}^{b} wR_{2} = \left\{ \sum \left[w(F_{o}^{2} - F_{c}^{2})^{2} \right] / \sum \left[w(F_{o}^{2})^{2} \right] \right\}^{1/2}$					

Table S1b. Crystallographic Data of **3** and **5** (the parameters are calculated with/without the solvent molecules).

[†] = data obtained from solvent molecules

Fig. S24. Molecular structure of **2**. Tetrahedral skeleton of **2** with four ligands aligned along the four edges (Re1-Re¹ and Re2-Re² for two dianionic bis-chelating (RBC^{2–}) ligand motifs, Re1-Re2 and Re²-Re¹ for two **L2** motifs, and Re1-Re² and Re2-Re¹ are the two missing edges) of the Re4 tetrahedron. Top: Ball and stick view of **2** without/with solvent molecules (left/right). Bottom: (left) Space-filling view of **2** (**L2** = blue; RBC^{2–} = red) and (right) **L2** is blue stick and chelating atoms of RBC are shown in red to show the orientation of chelating units around metal cores. Two 4-methoxyphenyl units are disordered in **2**. Only one of the occupancy of methoxyphenyl unit is shown for clarity. Color code: C = gray; N = blue; O =red; Re = green; CO = green in C).

Fig. S25a. Molecular structure of **3**. Tetrahedral skeleton of **3** with four ligands aligned along the four edges (Re1-Re2 and Re¹-Re² for two dianionic bis-chelating (RBC^{2–}) ligand motifs, Re1-Re² and Re2-Re¹ for two **L3** motifs, and Re1-Re¹ and Re2-Re² are the two missing edges) of the Re4 tetrahedron. (A) Ball and stick view of **3** (hydrogen atoms are omitted for clarity; bonds of **L3** are shown in blue; bonds of chelating atoms of RBC are shown in red). (B) Space-filling view of **3**. (C) Space-filling view of **3** showing cavity of face in which OCH₃ resides (D) **3** with chelating atoms (red), **L3** (blue) to show the orientation of chelating units around metal cores. Two of the disordered methoxy units in **3** are not shown for clarity. Color code: C = gray; N = blue; O = red; Re = green; CO = green in C).

Fig. S25b. Molecular structure of 3 with disordered two methoxy units. Hydrogen atoms and solvents molecules are removed for clarity (picture drawn from data of 3.solvents).

Fig. S25c. Molecular structure of 3 with disordered two methoxy units. Two toluene solvent molecules are shown as space filling view (picture drawn from data of 3.solvents).

Fig. S26. Top: Molecular structure of **4** with disordered two methoxy units. Hydrogen atoms and solvents molecules are removed for clarity. Molecular structure of **4**. Bottom: Bonds of L**4** are shown in blue; bonds of chelating atoms of RBC are shown in red. Color code: C = gray; N = blue; O = red; $Re(CO)_3 = green$).

Fig. S27a. Top: Asymmetric unit of **5** showing two disordered 1,3-benzodioxole rings (hydrogen atoms, CO units and solvent molecules are removed for clarity). Molecular structure of **5** with solvent molecules.

Fig. S27. Molecular structure of **5**. Tetrahedral skeleton of **5** with four ligands aligned along the four edges (Re1-Re¹ and Re2-Re² for two dianionic bis-chelating (RBC^{2–}) ligand motifs, Re1-Re2 and Re²-Re¹ for two **L5** motifs, and Re1-Re² and Re2-Re¹ are the two missing edges) of the Re4 tetrahedron. (A) Ball and stick view of **5** (hydrogen atoms are omitted for clarity; bonds of **L5** are shown in blue; bonds of chelating atoms of RBC are shown in red). (B) Space-filling view of **5**.(C) **5** with chelating atoms (red), **L5** (blue) to show the orientation of chelating units around metal cores. Only one of the occupancy of 1,3-benzodioxole unit is shown for clarity. Color code: C = gray; N = blue; O = red; Re = green; CO = green in C).

Electronic Supporting information

Fig. S28. Molecular structure of 1 showing size of tetrahedron edges.

Fig. S29. Molecular structure of 2 showing size of tetrahedron edges.

Electronic Supporting information

Fig. S30. Molecular structure of 3 showing size of tetrahedron edges.

Fig. S31. Molecular structure of 4 showing size of tetrahedron edges.

Fig. S32. Molecular structure of 5 showing size of tetrahedron edges.