Supporting Information

Wrinkled two-dimensional ultrathin Cu(II)-porphyrin framework nanosheets

hybridizing with polypyrrole for flexible all-solid-state supercapacitors

Weiwei Zhao,[†]^a Weikang Wang,[†]^a Jiali Peng,^a Tiantian Chen,^a Beibei Jin,^a Shujuan Liu,^a Wei Huang,^{a,b,*} and Qiang Zhao^{a,*}

Fig. S1 SEM images of the flat ultrathin 2D Cu-TCPP film through the electrophoretic deposition of the flat ultrathin 2D Cu-TCPP nanosheets onto the surface of ITO-coated glass for 30 s. (a) The top-view SEM image. There are no macroporous structure existing in the film. (b) The cross-sectional SEM image. It shows that the flat ultrathin Cu-TCPP nanosheets tightly stack.

Fig. S2 Optical photographs of Cu-TCPP/PPy samples prepared through the electrochemical polymerization of PPy with the flat ultrathin Cu-TCPP film on the surface of ITO glass (The electrophoretic deposition time of Cu-TCPP is 30 s, 1 min and 3 min, respectively, from left to right.). It shows that the flat ultrathin Cu-TCPP nanosheets can't completely combine with PPy, which is mainly attributed to that the dense stacking of flat ultrathin Cu-TCPP nanosheets prevents the immersion of pyrrole molecules into the interlayer intervals.

Fig. S3 GCD curves of Cu-TCPP/PPy (The electrophoretic deposition time of Cu-TCPP is 30 s. The Electrochemical polymerization time is 600 s.) and PPy films at a current density of 1 mA cm⁻³ (a) and 0.2 A g⁻¹ (b).

Fig. S4 Areal capacitance of different Cu-TCPP/PPy electrodes through the electrophoretic deposition of wrinkled ultrathin 2D Cu-TCPP nanosheets for a certain time of 0 s (1), 30 s (2), 1 min (3), 3 min (4), 5 min (5) and 10 min (6) and electrochemical polymerization of PPy at 0.8 V versus Ag/AgCl for 600 s. Current density: 1 mA cm⁻².

Fig. S5 Gravimetric capacitance of different Cu-TCPP/PPy electrodes through the electrophoretic deposition of wrinkled ultrathin 2D Cu-TCPP nanosheets for a certain time of 0 s (1), 30 s (2), 1 min (3), 3 min (4), 5 min (5) and 10 min (6) and electrochemical polymerization of PPy at 0.8 V versus Ag/AgCl for 600 s. Current density: 1 A g^{-1} .

Fig. S6 Electrochemical impedance spectroscopy of different Cu-TCPP/PPy electrodes through the electrophoretic deposition of wrinkled 2D ultrathin Cu-TCPP nanosheets for a certain time of 0 s (1), 30 s (2), 1 min (3), 3 min (4), 5 min (5) and 10 min (6) and electrochemical polymerization of PPy at 0.8 V versus Ag/AgCl for 600 s. Frequency range: 0.01 Hz~10 kHz. Electrolyte: 0.5 M H_2SO_4 .

The electrochemical impedance spectroscopy of the pristine PPy and Cu-TCPP/PPy films with different contents of Cu-TCPP and PPy are measured to study the charge transfer resistance (R_{ct}) and ion transport. Nyquist plots of all Cu-TCPP/PPy electrodes show negligible semicircles and a quite low R_{ct} , reflecting a good ionic conductivity of the electrodes.¹ While, with the contents of Cu-TCPP nanosheets increasing, the R_{ct} gradually becomes larger, suggesting that the hybrid of Cu-TCPP nanosheets has a significant effect on the electrocic conductivity of the PPy film. At high frequencies, the slope of the plot for the PPy-containing film shows a slightly higher diffusion resistance compared to pristine PPy film, presumably due to the presence of Cu-TCPP nanosheets. A sudden increase in the slope of sample 6 is ascribed to the absence of Cu-TCPP nanosheets in local areas.

Fig. S7 Areal capacitance of different Cu-TCPP/PPy electrodes through the electrophoretic deposition of wrinkled ultrathin 2D Cu-TCPP nanosheets for 30 s and electrochemical polymerization of PPy at 0.8 V versus Ag/AgCl for a certain time of 400 s, 600 s, 900 s and 1200 s. Current density: 1 mA cm⁻².

Fig. S8 (a) The top-view SEM image and (b) cross-sectional SEM image of the Cu-TCPP/PPy film after cycling test.

Table S1 Parameters of Cu-TCPP/PPy films through the flexible Cu-TCPP/PPy hybrid films through the combination of electrophoretic deposition method and electrochemical polymerization technology.

Cu-TCPP/PPy film ^a	Mass	Size	Thickness
Cu-TCPP 0s	1.7 mg	1.0*1.4 cm ²	30 µm
Cu-TCPP 30 s	1.8 mg	1.0*1.4 cm ²	30 µm
Cu-TCPP 1 min	1.8 mg	1.0*1.4 cm ²	28 µm
Cu-TCPP 3 min	1.8 mg	1.0*1.4 cm ²	21 µm
Cu-TCPP 5 min	1.8 mg	1.0*1.4 cm ²	19 µm
Cu-TCPP 10 min	1.8 mg	1.0*1.4 cm ²	17 μm

^a The electrophoresis deposition time is set as 30 s, 1 min, 3 min, 5 min and 10 min. The PPy is electrochemical polymerized onto the wrinkled Cu-TCPP film under constant voltage of 0.8 V versus Ag/AgCl for 600 s.

1. M. Boota, B. Anasori, C. Voigt, M.-Q. Zhao, M. W. Barsoum and Y. Gogotsi, *Adv. Mater.*, 2016, 28, 1517-1522.