Supporting Information

1.	Characterization of the ligand precursor 12
2.	Characterization of complex 2
3.	Characterization of complex 35
4.	Characterization of the reaction products
a)	(CH ₂) ₄ NCH ₂ OSiMe ₂ Ph (4a)
b)	(CH ₂) ₄ NMe (5a)10
c)	$Me_2NCH_2OSiMe_2Ph(\mathbf{4b})$ 11
d)	Me ₃ N (5b)13
e)	PhMeNCH ₂ OSiMe ₂ Ph (4c)15
f)	PhNMe ₂ (5c)17
g)	Ph ₂ NCH ₂ OSiMe ₂ Ph (4d)
h)	Ph ₂ NMe (5d)20
i)	ⁱ Pr ₂ NCH ₂ OSiMe ₂ Ph (4e)21
j)	ⁱ Pr ₂ NMe (5e)
5 . ec	NMR studies of the 2 or 3 -catalyzed reactions (5 mol%) of <i>N</i> -formylpyrrolidine with 2 . of HSiMe ₂ Ph at RT
6. wi	NMR monitoring of the 2 or 3 -catalyzed reactions (0.5 mol%) of <i>N</i> -formylpyrrolidine th HSiMe ₂ Ph at RT26
7. HS	NMR monitoring of the 2 -catalyzed reactions (0.5 mol%) of <i>N</i> -formylpyrrolidine with SiMe ₂ Ph at 323 K27
8.	NMR studies
a)	2-catalyzed reaction of amides and 1 eq. of HSiMe ₂ Ph28
I.	N-Formylpyrrolidine
II.	DMF
Ш	N-Methyl-N-phenylformamide
IV	. <i>N</i> , <i>N</i> -diphenylformamide30
V.	Diisopropylformamide
b)	$\textbf{3}\text{-catalyzed reaction of amides and 2 eq. of HSiMe_2Ph31}$
I.	N-Formylpyrrolidine
II.	DMF
Ш	N-Methyl-N-phenylformamide32
IV	. <i>N,N</i> -Diphenylformamide32
V.	Diisopropylformamide

1. Characterization of the ligand precursor 1

Figure 2. ¹H-¹³C HSQC NMR spectrum of 1

Figure 3. ¹H-²⁹Si HMBC NMR spectrum of 1

Figure 4. High Resolution Mass Spectrometry (ESI⁺) of compound 1 (found and calculated)

2. Characterization of complex 2

Figure 5. ¹H-NMR spectrum of complex 2

Figure 6. ¹³C-APT NMR spectrum of complex 2

Figure 7. ¹H-¹³C HSQC NMR spectrum of complex 2

Figure 8. ¹H-²⁹Si HMBC NMR spectrum of complex 2

3. Characterization of complex 3

Figure 9. ¹H-NMR spectrum of complex 3

Figure 10. ¹H-¹³C HSQC NMR spectrum of complex 3

Figure 11. ¹H-²⁹Si HMBC NMR spectrum of complex 3

Figure 12. ¹⁹F NMR spectrum of complex 3

4. Characterization of the reaction products

a) (CH₂)₄NCH₂OSiMe₂Ph (4a)

Figure 13. ¹H-NMR spectrum from the 2-catalyzed reaction of *N*-formylpyrrolidine with 1 eq. of HSiMe₂Ph

Figure 14. ¹³C-APT NMR spectrum from the **2**-catalyzed reaction of *N*-formylpyrrolidine with 1 eq. of HSiMe₂Ph

Figure 15. ¹H-¹³C-HSQC NMR spectrum from the **2**-catalyzed reaction of *N*-formylpyrrolidine with 1 eq. of HSiMe₂Ph

Figure 16. ¹H-²⁹Si-HMBC NMR spectrum from the 2-catalyzed reaction of *N*-formylpyrrolidine with 1 eq. of HSiMe₂Ph

Figure 17. ¹H-NMR spectrum from the 3-catalyzed reaction of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph

Figure 18. ¹³C-APT NMR spectrum from the 3-catalyzed reaction of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph

Figure 19. ¹H-¹³C HSQC NMR spectrum from the **3**-catalyzed reaction of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph

c) Me₂NCH₂OSiMe₂Ph (4b)

Figure 20. ¹H-NMR spectrum from the 2-catalyzed reaction of DMF with 1 eq. of HSiMe₂Ph

Figure 21. $^{\rm 13}\text{C}\text{-}\text{APT}$ NMR spectrum from the 2-catalyzed reaction of DMF with 1 eq. of $HSiMe_2Ph$

Figure 22. $^1\text{H-}{^{13}\text{C}}\text{-}\text{HSQC}$ NMR spectrum from the 2-catalyzed reaction of DMF with 1 eq. of $HSiMe_2Ph$

Figure 23. $^1\text{H}\text{-}^{29}\text{Si}\text{-}\text{HMBC}$ NMR spectrum from the 2-catalyzed reaction of DMF with 1 eq. of $HSiMe_2Ph$

Figure 24. ¹H-NMR spectrum from the 3-catalyzed reaction of DMF with 2 eq. of HSiMe₂Ph

Figure 25. $^{\rm 13}\text{C}\text{-}\text{APT}$ NMR spectrum from the 3-catalyzed reaction of DMF with 2 eq. of $HSiMe_2Ph$

Figure 26. $^1\text{H-}{}^{13}\text{C}$ HSQC NMR spectrum from the 3-catalyzed reaction of DMF with 2 eq. of HSiMe_2Ph

e) PhMeNCH₂OSiMe₂Ph (4c)

Figure 27. ¹H-NMR spectrum from the 2-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 1 eq. of HSiMe₂Ph

Figure 28. ¹³C-APT spectrum from the 2-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 1 eq. of HSiMe₂Ph

Figure 29. ¹H-¹³C-HSQC spectrum from the **2**-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 1 eq. of HSiMe₂Ph

Figure 30. ¹H-²⁹Si-HMBC spectrum from the **2**-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 1 eq. of HSiMe₂Ph

Figure 31. ¹H-NMR spectrum from the 3-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 2 eq. of HSiMe₂Ph

Figure 32. ¹³C-APT NMR spectrum from the **3**-catalyzed reaction of *N*-methyl-*N*-phenylformamide with 2 eq. of HSiMe₂Ph

Figure 33. ¹H-NMR spectrum from the **2**-catalyzed reaction of *N*,*N*-diphenylformamide with 1 eq. of HSiMe₂Ph

Figure 34. ¹³C-APT NMR spectrum from the **2**-catalyzed reaction of *N*,*N*-diphenylformamide with 1 eq. of HSiMe₂Ph

Figure 35. ¹H-¹³C-HSQC spectrum from the **2**-catalyzed reaction of *N*,*N*-diphenylformamide with 1 eq. of HSiMe₂Ph

Figure 36. ¹H-²⁹Si-HMBC spectrum from the **2**-catalyzed reaction of *N*,*N*-diphenylformamide with 1 eq. of HSiMe₂Ph

Figure 37. ¹H-NMR spectrum from the **3**-catalyzed reaction of *N*,*N*-diphenylformamide with 2 eq. of HSiMe₂Ph

Figure 38. ¹H-¹³C HSQC NMR spectrum from the **3**-catalyzed reaction of *N*,*N*-diphenylformamide with 2 eq. of HSiMe₂Ph

i) ⁱPr₂NCH₂OSiMe₂Ph (**4e**)

Figure 39. ¹H-NMR spectrum from the **2-**catalyzed reaction of *N*,*N*-diisopropylformamide with 1 eq. of HSiMe₂Ph

Figure 40. ¹³C-APT NMR spectrum from the **2-**catalyzed reaction of *N*,*N*-diisopropylformamide with 1 eq. of HSiMe₂Ph

Figure 41. ¹H-²⁹Si-HMBC spectrum from the **2-**catalyzed reaction of *N*,*N*-diisopropylformamide with 1 eq. of HSiMe₂Ph

j) ⁱPr₂NMe (**5e**)

Figure 42. ¹H-NMR spectrum from the 3-catalyzed reaction of *N*,*N*-diisopropylformamide with 2 eq. of HSiMe₂Ph

Figure 43. ¹³C APT NMR spectrum from the **3**-catalyzed reaction of *N*,*N*-diisopropylformamide with 2 eq. of HSiMe₂Ph

Figure 44. ¹H-¹³C HSQC NMR spectrum from the **3**-catalyzed reaction of *N*,*N*-diisopropylformamide with 2 eq. of HSiMe₂Ph

5. NMR studies of the **2** or **3**-catalyzed reactions (5 mol%) of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph at RT

Figure 45. ¹H-NMR spectra of the 2-catalyzed reaction (5 mol%) of N-formylpyrrolidine with 2 eq. of HSiMe₂Ph at RT. (♦, 4a; ◦: 5a; ♠: cyclooctane)

Figure 46. ¹H-NMR spectra of the 3-catalyzed reaction (5 mol%) of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph at RT. (♦, *N*-formylpyrrolidine; ○: 5a; ♠: cyclooctane)

Figure 47. ¹H-¹³C HSQC NMR spectrum showing the formation of cyclooctane

Figure 48. ¹H-NMR spectrum from reaction (5 mol%) of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph showing the formation of unidentified [Ir]-Hydride species

Figure 49. ¹H-²⁹Si-HMBC spectrum showing the formation of the siloxane O(SiMe₂Ph)₂

6. NMR monitoring of the **2** or **3**-catalyzed reactions (0.5 mol%) of *N*-formylpyrrolidine with HSiMe₂Ph at RT

Figure 50. Reaction profile of the **2**-catalyzed reaction of *N*-formylpyrrolidine with 2 eq. of HSiMe₂Ph. The discontinuous lines only represent a connection between the data points.

Figure 51. Reaction profile of the **3**-catalyzed reaction of *N*-formylpyrrolidine with 2 eq. of $HSiMe_2Ph$ (**4a** was not observed). The discontinuous lines only represent a connection between the data points.

Figure 52. Reaction profile of the **3**-catalyzed reaction of N-formylpyrrolidine with 1 eq. of $HSiMe_2Ph$ (**4a** was not observed). The discontinuous lines only represent a connection between the data points.

7. NMR monitoring of the 2-catalyzed reactions (0.5 mol%) of Nformylpyrrolidine with HSiMe₂Ph at 323 K

Figure 53. ¹H-NMR spectra of the 2-catalyzed reaction (0.5 mol%) of *N*-formylpyrrolidine with 1 eq. of HSiMe₂Ph at 323 K. (♦, *N*-formylpyrrolidine; ♠: 4a; ○: 5a)

8. NMR studies

a) 2-catalyzed reaction of amides and 1 eq. of HSiMe₂Ph

I. N-Formylpyrrolidine

Figure 54. Silane consumption in the formation of **4a** The discontinuous lines only represent a connection between the data points.

Figure 55. Silane consumption in the formation of 4b. The discontinuous lines only represent a connection between the data points.

III. N-Methyl-N-phenylformamide

Figure 56. Silane consumption in the formation of **4c.** The discontinuous lines only represent a connection between the data points.

Figure 57. . Silane consumption in the formation of 4d. The discontinuous lines only represent a connection between the data points.

V. Diisopropylformamide

Figure 58. Silane consumption in the formation of 4e. The discontinuous lines only represent a connection between the data points.

b) 3-catalyzed reaction of amides and 2 eq. of HSiMe₂Ph

I. N-Formylpyrrolidine

Figure 59. Silane consumption in the formation of **5a**. The discontinuous lines only represent a connection between the data points.

II. DMF

Figure 60. Silane consumption in the formation of 5b. The discontinuous lines only represent a connection between the data points.

III. N-Methyl-N-phenylformamide

Figure 61. Silane consumption in the formation of **5c.** The discontinuous lines only represent a connection between the data points.

IV. N, N-Diphenylformamide

Figure 62. Silane consumption in the formation of 5d. The discontinuous lines only represent a connection between the data points.

V. Diisopropylformamide

Figure 63. Silane consumption in the formation of 5e. The discontinuous lines only represent a connection between the data points.