New Ag₈PtO₆: synthesis, crystal structure, physical properties and theoretical analyses

Gohil Singh Thakur^a, Hans Reuter^b, Helge Rosner^a, Gerhard Fecher^a, Claudia Felser^b and Martin Jansen^{a,c*}

E-mail: <u>M.Jansen@fkf.mpg.de</u> Telephone: +49 351 4646-3003 Fax: +49 351 4646-3002

Table S1. Bond lengths [Å] and angles [°] for Ag₈PtO₆.

Ag(1)-O(1)	2.053(3)
Ag(1)-O(1)#1	2.053(3)
Ag(2)-O(4)#2	2.114(3)
Ag(2)-O(1)	2.153(3)
Ag(3)-O(3)	2.120(3)
Ag(3)-O(5)#3	2.189(3)
Ag(4)-O(3)	2.225(3)
Ag(4)-O(1)#4	2.252(3)
Ag(5)-O(2)#2	2.159(3)
Ag(5)-O(3)	2.191(3)
Ag(6)-O(4)#2	2.171(3)
Ag(6)-O(6)#5	2.198(3)
Ag(7)-O(2)#3	2.137(3)
Ag(7)-O(5)#5	2.161(3)
Ag(8)-O(6)#4	2.155(3)
Ag(8)-O(6)#5	2.155(3)
Ag(9)-O(5)#6	2.170(3)
Ag(9)-O(6)#5	2.176(3)
Pt(1)-O(2)	2.006(3)
Pt(1)-O(4)	2.011(3)
Pt(1)-O(1)	2.021(3)
Pt(1)-O(3)	2.026(3)
Pt(1)-O(6)	2.027(3)
Pt(1)-O(5)	2.033(3)
O(1)-Ag(4)#4	2.252(3)
O(2)-Ag(7)#3	2.137(3)
O(2)-Ag(5)#7	2.159(3)
O(4)-Ag(2)#7	2.114(3)
O(4)-Ag(6)#7	2.171(3)
O(5)-Ag(7)#8	2.161(3)
O(5)-Ag(9)#9	2.170(3)
O(5)-Ag(3)#3	2.189(3)
O(6)-Ag(8)#8	2.155(3)
O(6)-Ag(9)#8	2.176(3)
O(6)-Ag(6)#8	2.198(3)
O(1)-Ag(1)-O(1)#1	180.0
O(4)#2-Ag(2)-O(1)	167.74(11)

O(3)-Ag(3)-O(5)#3	16642(11)
O(3)-Ag(4)- $O(1)$ #4	$154\ 60(10)$
O(2)#2-Ag(5)-O(3)	169 28(11)
O(4)#2-Ag(6)-O(6)#5	163.63(10)
$O(2)$ #3- $\Delta g(7)$ - $O(5)$ #5	176.93(11)
O(2)#J-Mg(7)-O(5)#5	180.0
O(0)#4-Ag(0)- $O(0)$ #5	160.0 165.70(11)
O(3)#0-Ag(9)-O(0)#3	103.70(11)
$O(2) D_{4}(1) O(4)$	04.12(12)
O(2)-Pt(1)- $O(4)$	94.13(12) 174.52(11)
O(2)-Pt(1)-O(1)	1/4.53(11)
O(4)-Pt(1)-O(1)	82.5/(11)
O(2)-Pt(1)-O(3)	90.10(11)
O(4)-Pt(1)-O(3)	86.22(11)
O(1)-Pt(1)-O(3)	85.34(11)
O(2)-Pt(1)-O(6)	94.01(11)
O(4)-Pt(1)-O(6)	94.93(11)
O(1)-Pt(1)-O(6)	90.62(11)
O(3)-Pt(1)-O(6)	175.63(11)
O(2)-Pt(1)-O(5)	89.32(11)
O(4)-Pt(1)-O(5)	176.53(11)
O(1)-Pt(1)-O(5)	93.97(11)
O(3)-Pt(1)-O(5)	93.44(11)
O(6)-Pt(1)-O(5)	85.16(11)
Pt(1)-O(1)-Ag(1)	127.81(14)
Pt(1)-O(1)-Ag(2)	119.46(13)
Ag(1)-O(1)-Ag(2)	89.12(11)
Pt(1)-O(1)-Ag(4)#4	118.41(13)
Ag(1)-O(1)-Ag(4)#4	84.48(10)
Ag(2)-O(1)-Ag(4)#4	110.17(12)
Pt(1)-O(2)-Ag(7)#3	126.06(14)
Pt(1)-O(2)-Ag(5)#7	111.73(13)
Ag(7)#3-O(2)-Ag(5)#7	89.74(10)
Pt(1)-O(3)-Ag(3)	122.14(14)
Pt(1)-O(3)-Ag(5)	$114\ 21(13)$
Ag(3)-O(3)-Ag(5)	89 53(11)
Pt(1)-O(3)-Ag(4)	97 15(11)
Ag(3)-O(3)-Ag(4)	12073(13)
Ag(5) - O(3) - Ag(4)	11438(12)
$Pt(1) - O(4) - A \sigma(2) \# 7$	114.36(12) 114.46(13)
Pt(1) = O(4) = Ag(6) # 7	127.45(14)
$\Delta \sigma(2) \# 7 - \Omega(4) - \Delta \sigma(6) \# 7$	89 95(10)
$Rg(2)\pi - O(4) - Rg(0)\pi - Dt(1) O(5) A g(7) + Q$	116.70(12)
Pt(1) O(5) Ag(7) # 0	110.79(13) 115.17(13)
P((1)=O(3)=Ag(9)#9	113.17(13) 119.05(12)
Ag(7)#6-O(5)-Ag(9)#9 Dt(1) O(5) A = (2)#2	110.93(13)
PI(1)-O(3)-Ag(3)#3	100.14(12)
Ag(7)#0-O(5)-Ag(5)#3	80.90(10)
Ag(3)#3-O(3)-Ag(3)#3	113.01(12)
Pt(1)-O(6)-Ag(8)#8	113./0(13)
Pt(1)-U(6)-Ag(9)#8	114.40(13)
Ag(8)#8-O(6)-Ag(9)#8	99.46(11)
Pt(1)-O(6)-Ag(6)#8	113.19(13)

Ag(8)#8-O(6)-Ag(6)#8 88.53(10) Ag(9)#8-O(6)-Ag(6)#8 122.97(13)

Symmetry transformations used to generate equivalent atoms:

1. -x+1,-y,-z+1 2. x-1,y,z 3. -x+1,-y+1,-z 4. x-1,y+1,z 5. -x+1,-y+1,-z+1 6. x,y+1,z 7. x+1,y,z 8. x+1,y-1,z 9. x,y-1,z

Table S2. Anisotropic displacement parameters (Å² x 10³) for Ag₈PtO₆. The anisotropic displacement factor exponent takes the form: $-2 \pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag(1)	5(1)	4(1)	4(1)	1(1)	0(1)	-2(1)
Ag(2)	5(1)	6(1)	5(1)	0(1)	-1(1)	-1(1)
Ag(3)	8(1)	5(1)	4(1)	0(1)	0(1)	-2(1)
Ag(4)	8(1)	5(1)	5(1)	-1(1)	-1(1)	-1(1)
Ag(5)	5(1)	6(1)	5(1)	0(1)	0(1)	-2(1)
Ag(6)	10(1)	4(1)	5(1)	0(1)	1(1)	-3(1)
Ag(7)	6(1)	6(1)	4(1)	0(1)	0(1)	-2(1)
Ag(8)	6(1)	6(1)	4(1)	1(1)	-1(1)	-1(1)
Ag(9)	5(1)	6(1)	5(1)	0(1)	0(1)	-2(1)
Pt(1)	3(1)	3(1)	2(1)	0(1)	0(1)	-1(1)
O(1)	6(1)	6(1)	3(1)	1(1)	2(1)	-2(1)
O(2)	5(1)	7(1)	6(1)	0(1)	3(1)	-2(1)
O(3)	5(1)	5(1)	6(1)	1(1)	-1(1)	1(1)
O(4)	5(1)	5(1)	6(1)	0(1)	-3(1)	-2(1)
O(5)	7(1)	8(1)	4(1)	-1(1)	1(1)	-4(1)
O(6)	5(1)	4(1)	6(1)	0(1)	0(1)	0(1)

Figure S1. Thermal decomposition profile of Ag₈PtO₆.