Selectively detecting toluene and benzaldehyde by two stable lanthanideorganic frameworks as luminescent probes

Xue-Jing Che,^a Sheng-Li Hou,^a Ying Shi,^a Guo-Li Yang,^a Yin-Ling Hou,^{*b} and Bin Zhao^{*a}

^a Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China.

Corresponding Author

*aFax: (+86)-22-23502458; E-mail: zhaobin@nankai.edu.cn.

*b Email: hyl0506@126.com.

Experimental Section

Fig. S1(a)The coordinated environments of Tb(III),(b)the polyhedral representation of Tb(III),(c)3D structure of compound 1 along the *a* direction by hydrogen bonds.

Compound	1	2
Empirical formula	$C_8H_{10}O_{11}STb$	$C_8H_{11}EuO_{11}S$
Formula weight	473.14	467.19
Crystal system	orthorhombic	orthorhombic
Space group	Pna2 ₁	Pna2 ₁
<i>a</i> (Å)	7.1753(14)	7.14380(14)
<i>b</i> (Å)	10.353(2)	16.4808(3)
<i>c</i> (Å)	16.497(3)	10.3419(2)
α (°)	90.00	90
β (°)	90.00	90
γ (°)	90.00	90

Table S1. Crystal data and structure refinement details for 1 and 2.

^{b.} School of Life and Health Science, Kaili University, Kaili, 556011, China.

$V(Å^3)$	1225.5(4)	1217.62(4)
Ζ	4	4
F(000)	908.0	904.0
GOOF on F^2	1.119	1.051
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0256, wR_2 = 0.0630$	$R_1 = 0.0292$, $wR_2 = 0.0761$
Final <i>R</i> indices (all data)	$R_1 = 0.0278, wR_2 = 0.0641$	$R_1 = 0.0298$, $wR_2 = 0.0773$

The Powder X-Ray Diffraction analysis and TG analysis

Fig. S2 (a) The Powder XRD patterns of the compound 1 and simulated .(b) The Powder XRD patterns of the compound 2 and simulated .

Fig. S3 (a)The PXRD patterns of 1 soaked in toluene.(b)The PXRD patterns of 1 after five luminescent recycling compared with the simulated one.

Fig. S4 (a)The PXRD patterns of 1 soaked in beazaldehyde. (b)The PXRD patterns of 2 after five luminescent recycling compared with the simulated one.

Fig. S5 Thermogravimetric analyses curve of 1, the weight loss of 15.86% is close to the calculated value (16.24%).

Fig. S6 Thermogravimetric analyses curve of 2, the weight loss of 15.92% is close to the calculated value (16.24%).

Luminescent Properties.

Fig. S7 The solid state luminescence spectra of NaH₂SIP and compound 1. (λ =260 nm)

Fig. S8 Emission spectra of compound 1 in different solvents when excited at 260nm.

Fig. S9 The solid state luminescence spectra of NaH₂SIP and compound 2. (λ =260 nm)

Fig. S10 Emission spectra of compound 2 in different solvents when excited at 260nm.

Fig. S11 The UV-vis spectra of toluene in ethanol.

Fig. S12 The UV-vis spectra of benzaldehyde in ethanol.

	Sample	after five recycling
Tb ³⁺ (ppm)	0	1.270
Eu ³⁺ (ppm)	0	4.770

Table S2 The ICP results of compounds 1 and 2 after five luminescent recycling.

Fig. S13 The phosphorescence spectrum of Gd-MOF at 77 K.

Fig. S14 The UV-vis spectra of NaH₂SIP in ethanol.

Fig. S15 Simplified schematic diagram of the ligand–metal energy transfer (S_0 is the ground state of the ligand; S_1 and T_1 are the singlet state and triplet state of the ligand, respectively) and the energy transfer between the lowest excited states 5D_4 of the Tb³⁺ ion centers (**a**) and Eu³⁺ ion centers (**b**).

References

Z. Wang, M. Str€obele, K. L. Zhang, H. J. Meyer, X. Z. You, Z. Yu, *Inorg. Chem. Commun.*, 2002, 5, 230.
Q. Y. Liu and L. Xu, *Eur. J. Inorg. Chem.*, 2005, 17, 3458.

3 H. Xu, H. C. Hu, C. S. Cao, and B. Zhao, Inorg. Chem., 2015, 54, 4585.