Morphology Dependent, Green, and Selective Catalytic Styrene Oxidation on Co_3O_4

Ruchi Jain^a and Chinnakonda S. Gopinath^{ab}

Electronic Supplementary Information (ESI)

ESI 1. Calculation of turn-over frequency

Turn-over frequency (TOF) was calculated by using the measured conversion of 50 mg Co_3O_4 catalyst.

(a) Total no. of Co³⁺ site in 0.05gm of NR catalysts Calculation of the total surface area of 0.05 g of Co₃O₄ NR Volume of single NR(based on TEM)=6X6X60=2160 nm3 Density of Co₃O₄= 6.11 gm.cm⁻³ Volume of 0.05 gm of CO₃O₄= 0.05gm/6.11 gm.cm⁻³= 8.18x10⁻³ cm³ =8.18 x10¹⁸ nm³ Total number of nanorods in 0.05 g of Co₃O₄ NRs= V_{total} /V_{each nanorod} =8.18x10¹⁸/2160 = 3.78 x10¹⁵

Total number of Co³⁺ ions on the surfaces of all Co₃O₄ nanorods: according to XPS analysis results Co₃O₄ NR contains almost 58% of Co³⁺ site at UHV RT. Hence. Total no. of active site i.e. Co³⁺ sites in NR = $3.78 \times 10^{15} \times 58/100 = 2.19 \times 10^{15}$

(b) Total no. of Co³⁺ site in 0.05gm of NC catalysts Calculation of the total surface area of 0.05 g of Co₃O₄ NC Volume of single NC(based on TEM)=20X20X20=8000 nm³ Density of Co₃O₄= 6.11 gm.cm⁻³ Volume of 0.05 gm of CO₃O₄= 0.05gm/6.11 gm.cm⁻³= 8.18x10⁻³ cm³ =8.18 x10¹⁸ nm³ Total number of nanorods in 0.05 g of Co₃O₄ NRs= $V_{total} / V_{each nanorod} = 8.18x10^{18} / 8000$ = 1.02 x10¹⁵ Total number of Co³⁺ ions on the surfaces of all Co₃O₄ nanorods: according to XPS analysis

results Co_3O_4 NR contains almost 60% of Co^{3+} site at UHV RT. Hence. Total no. of Co^{3+} sites in NC catalyst = 1.02 x10¹⁵ x 60/100 = 6.12x10¹⁴

(c) Calculation of the total surface area of 0.05 g of Co_3O_4 HNR Total no. of Co^{3+} site in 0.05gm of NC catalysts Calculation of the total surface area of 0.05 g of Co_3O_4 NR Volume of single HNR(based on TEM)=10X30X120=36000 nm³ Density of Co_3O_4 = 6.11 gm.cm⁻³ Volume of 0.05 gm of Co_3O_4 = 0.05gm/6.11gm.cm⁻³= 8.18x10⁻³ cm³ = 8.18 x10¹⁸ nm³ Total number of nanorods in 0.05 g of Co_3O_4 NRs= $V_{total} / V_{each nanorod} = 8.18x10^{18}/36000$ = 2.27 x10¹⁴ Total number of Co^{3+} ions on the surfaces of all Co_3O_4 nanorods: according to XPS analysis results Co_3O_4 NR contains almost 50% of Co^{3+} site at UHV RT. Hence. Total no. of Co^{3+} sites in 0.05 g of catalyst = 2.27 x10¹⁴ x50/100 = 1.13x10¹⁴

(d) No. of styrene molecules in 0.5 mmol of substrate= $6.022 \times 10^{23} \times 0.5 \times 10^{-3}$

 $= 3.0 \times 10^{20}$

TOF calculation = no. of molecules(mole.) of reactant converted per active site of the catalyst/time

Styrene	Initial	Conversion	Conversio	No. of	TON	TOF	TOF	TOF
(mmol)	reactant	(%)	n (mole.)	active		(sec⁻¹)	(min⁻¹)	(h⁻¹)
	taken(mole.)			sites				
0.5	0.3x10 ²¹	100	0.3x10 ²¹	1.02x10 ¹⁵	2.9x10 ⁵	16.1	966	5.79x10 ⁴
5.0	3.1x10 ²¹	49.8	1.5x10 ²¹	1.02x10 ¹⁵	14.7x10 ⁵	81.6	4896	29.3x10 ⁴
8.75	5.4x10 ²¹	23.2	1.2x10 ²¹	1.02x10 ¹⁵	11.7x10 ⁵	65	3900	23.4x10 ⁴
13.1	8.1x10 ²¹	17	1.4 x10 ²¹	1.02x10 ¹⁵	13.7x10 ⁵	76.1	4566	27.3x10 ⁴
17.5	10.8x10 ²¹	16	1.7 x10 ²¹	1.02x10 ¹⁵	16.6x10 ⁵	92.2	5532	33.2x10 ⁴
26.5	16.4x10 ²¹	7.3	1.2x10 ²¹	1.02x10 ¹⁵	11.7x10 ⁵	65	3900	23.4x10 ⁴