Supporting Information to

Use of a Fluorinated Probe to Quantitatively Monitor Amino Acid Binding Preferences of Ruthenium(II) Arene Complexes

George S. Biggs, [†] Michael J. O'Neill, ^{†, ‡} Pablo Carames Mendez, Thomas G. Scrase, [§] Yulu Lin, Amzar Muzani Bin-Maroof, Andrew D. Bond, Sally R. Boss* and Paul D. Barker*

University of Cambridge, Chemistry Department, Lensfield Road, Cambridge CB2 1EW, UK

‡ Faculty of Science and Engineering School of Mathematics and Physical Sciences, University of Hull, Hull, UK

§ Johnson Matthey Plc, 28 Cambridge Science Park, Milton Road Cambridge CB4 0FP, UK

Corresponding Author: Email Paul Barker: pdb30@cam.ac.uk , Sally Boss: srb39@cam.ac.uk

Table of Contents

PREPARATION AND CHARACTERISATION OF BIPYRIDINE LIGANDS AND RUTHENIUM COMPLEXES	2
CRYSTALLOGRAPHIC DATA FOR RUTHENIUM COMPLEXES	8
NMR OF RU(II) ARENE COMPLEXES WITH AMINO ACIDS AND GLUTATHIONE	13
ESI-MS OF RU(II) ARENE COMPLEXES IN PHOSPHATE BUFFER	20
ESI-MS OF RU(II) ARENE COMPLEXES WITH AMINO ACIDS AND GLUTATHIONE	21
REFERENCES	22

Preparation and characterisation of bipyridine ligands and ruthenium complexes

Figure S1. Structures of $Ru^{II}(\eta_6\text{-}arene)(\text{complexes}]$ [1] – [12].

Synthesis of A – 3,3'-difluoro-2,2'-bipyridine

The ligand 2-bromo-3-fluoropyridine (1.00 g, 5.68 mmol), $Pd^{II}(OAc)_2$ (31.8 mg, 0.14 mmol), K_2CO_3 (0.78 g, 5.68 mmol) and poly(ethylene glycol) (Mw 4000, 5.0 g) were combined in a nitrogen purged flask. This mixture was heated to 120 °C and the temperature maintained for 48 hours with stirring. The solution was cooled to 80 °C and 15 mL of warm water was added. Once at room temperature a further 10 mL of water was added and the suspension exhaustively extracted with ethyl acetate. The combined extracts were washed with saturated aqueous Na₂S₂O₃ and three times with brine. The organic layer was then dried over MgSO₄ and the solvent removed *in vacuo*. The solid was then purified via sublimation to a white needle crystalline solid. Yield 174 mg (32%).

¹H NMR (400.13 MHz, CDCl₃): δ (ppm) 8.61 (d, ${}^{3}J_{HH} = 5.0$ Hz, 2H, 6,6'-position), 7.54 (m, 2H, 4,4'-position), 7.52 (m, 2H, 5,5'-position). ${}^{13}C{}^{1}H$ NMR (100.57 MHz, CDCl₃): δ (ppm) 157.9 (dd, ${}^{2}J_{CF} = 265.1$ Hz, ${}^{4}J_{CF} = 3.8$ Hz, 3,3'-position), 146.1 (overlapping doublets, ${}^{4}J_{CF} = 2.7$ Hz, ${}^{4}J_{CF} = Hz$, 6,6'-positions), 142.3 (dd, ${}^{2}J_{CF} = 8.3$ Hz, ${}^{3}J_{CF} = 2.3$ Hz, 2,2'-position), 125.5 (overlapping doublets, ${}^{3}J_{CF} = 2.6$ Hz, ${}^{3}J_{CF} = 2.1$ Hz, 5,5'-positions), 124.2 (d, ${}^{2}J_{CF} = 6.7$ Hz, 4,4'-position). 124.1 (d, ${}^{2}J_{CF} = 6.7$ Hz, 4,4'-position). ${}^{19}F{}^{1}H$ NMR (376.50 MHz, CDCl₃): δ (ppm) -121.9 (s).

Synthesis of B – 5,5'-difluoro-2,2'-bipyridine

This product was prepared and purified in a manner similar to **A**, but using the starting pyridine 2-bromo-5-fluoropyridine instead. Yield 298 mg (55%).

¹H NMR (400.13 MHz, CDCl₃): δ (ppm) 8.50 (d, ⁴J_{HH} = 2.8 Hz, 2H, 6,6'-position), 8.38 (dd, ³J_{HH} = 8.7 Hz, ⁴J_{HF} = 4.5 Hz, 2H, 3,3'-position), 7.52 (m, ³J_{HH} = 8.7 Hz, ⁴J_{HH} = 2.8 Hz, 2H, 4,4'-position). ¹³C{¹H} NMR (100.57 MHz, CDCl₃): δ (ppm) 160.0 (d, ¹J_{CF} = 258 Hz, 5,5'-position), 151.7 (d, ⁴J_{CF} = 4 Hz, 2,2'-position), 137.4 (d, ²J_{CF} = 24 Hz, 6,6'-position), 123.8 (d, ²J_{CF} = 18 Hz, 4,4'-position), 122.3 (d, ³J_{CF} = 5 Hz, 3,3'-position). ¹⁹F{¹H} NMR (376.50 MHz, CDCl₃): δ (ppm) -127.4 (s).

Synthesis of C – 6,6'-difluoro-2,2'-bipyridine

This product was prepared and purified in a manner similar to **A**, but using the starting pyridine 2-bromo-6-fluoropyridine instead. This product proved harder to isolate due to its low melting point. Yield 27 mg (5%).

¹H NMR (400.13 MHz, CDCl₃): δ (ppm) 8.26 (dd, ³J_{HH} = 7.8 Hz, ⁴J_{HH} = 2.4 Hz, 2H, 3,3'position), 7.92 (overlapping dd, ³J_{HH} = 7.8 Hz, ³J_{HH} = 7.8 Hz, 2H, 4,4'-position), 6.97 (dd, ³J_{HH} = 7.8 Hz, ⁴J_{HH} = 2.4 Hz, 2H, 5,5'-position). Lack of sample restricted analysis to ¹H and ¹⁹F{¹H} NMR. ¹⁹F{¹H} NMR (376.50 MHz, CDCl₃): δ (ppm) -67.1 (s).

Synthesis of D – 5,5'-bis(trifluoromethyl)-2,2'-bipyridine

This product was prepared and purified in a manner similar to **A**, but using the starting pyridine 2-bromo-5-(trifluoromethyl)pyridine instead. Yield 261 mg (36%).

¹H NMR (400.13 MHz, CDCl₃): δ (ppm) 8.99 (d, ⁴J_{HH} = 1.8 Hz, 2H, 6,6'-position), 8.65 (d, ³J_{HH} = 8.4 Hz, 2H, 3,3'-position), 8.12 (dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 1.8 Hz, 2H, 4,4'-position). ¹³C{¹H} NMR (100.57 MHz, CDCl₃): δ (ppm) 157.8 (s, 2,2'-position), 146.5 (q, ³J_{CF} = 3.9 Hz, 6,6'-position), 134.5 (q, ³J_{CF} = 3.9 Hz, 4,4'-position), 127.3 (q, ²J_{CF} = 33 Hz, 5,5'-position), 123.7 (q, ¹J_{CF} = 273 Hz, <u>C</u>F₃), 121.4 (s, 3,3'-position). ¹⁹F{¹H} NMR (376.50 MHz, CDCl₃): δ (ppm) -62.4 (s).

Synthesis of Dimeric Ruthenium Complexes

The ruthenium starting materials $[Ru(\eta^6-benzene)Cl_2]_2$, $[Ru(\eta^6-tolyl)Cl_2]_2$, $[Ru(\eta^6-cymene)Cl_2]_2$ and $[Ru(\eta^6-benzene)Cl_2]_2$ were prepared according to reported procedures.^{1,2}

Synthesis of [1] - [Ru(η^6 -benzene)(5,5'-difluoro-2,2'-bipyridine)Cl][PF₆]

[(PhH)RuCl₂]_{2 (}117 mg, 0.23 mmol) and 5,5'-difluoro-2,2'-bipyridine (90.0 mg, 0.47 mmol) were added to a nitrogen purged flask. Freshly distilled MeOH (25 mL) was added and the reaction was stirred for 24 hours at room temperature. The contents were filtered under gravity to remove excess ruthenium and the solution was reduced to approximately 5mL *in vacuo*. NH₄PF₆ (230 mg, 1.40 mmol) was added and the mixture was shaken and left at -10 °C for a further 24 hours. The suspension was washed with Et₂O (10 mL) and the product (90.7 mg, 66%) collected by gravity filtration as an orange/yellow solid. Orange prism shaped crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Anal. Calcd for $C_{16}H_{12}CIF_8N_2PRu$: C, 34.83; H, 2.19; N, 5.08. Found: C, 35.03; H, 2.39; N, 4.85. LRMS (ESI⁺): m/z 407.01 $[M - PF_6]^+$ ($m_{calc} = 406.97$). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.78 (s, 2H, 6,6'-position), 8.71 (dd, ³J_{HH} = 9.6 Hz, ³J_{HF} = 4.6 Hz, 2H, 4,4'-position), 8.36 (overlapping dd, ³J_{HH} = 9.6 Hz, ⁴J_{HF} = 7.8 Hz, 2H, 3,3'-position), 6.30 (s, 6H, PhH). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 159.4 (d, ¹J_{CF} = 256 Hz, 5,5'-position),

150.7 (s, 2,2'-position), 144.7 (d, ${}^{2}J_{CF}$ = 33 Hz, 6,6'-position,), 127.4 (d, ${}^{2}J_{CF}$ = 19 Hz, 4,4'-position), 125.7 (d, ${}^{3}J_{CF}$ = 8.0 Hz, 3,3'-position), 87.2 (s, PhH). ${}^{19}F{}^{1}H{}$ NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 (d, ${}^{1}J_{PF}$ = 711 Hz, PF₆), -119.4 (s, 5,5'-position).

Synthesis of [2] - [Ru(η^6 -tolyl)(5,5'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(Tol)RuCl_2]_2$ (68.7 mg, 0.13 mmol), 5,5'-difluoro-2,2'-bipyridine (50.0 mg, 0.26 mmol) and NH₄PF₆ (150 mg, 0.92 mmol). The product (79.6 mg, 54%) was isolated as an orange powder. Orange crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Anal. Calcd for $C_{17}H_{14}ClF_8N_2PRu$: C, 36.09; H, 2.49; N, 4.95. Found: C, 35.75; H, 2.46; N, 4.73. LRMS (ESI⁺): *m/z* 420.88 [M - PF₆]⁺ (*m*_{calc} = 420.99). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.68 (overlapping dd, ³J_{HF} = 3.2 Hz, ⁴J_{HH} = 2.5 Hz, 2H, 6,6'-bipy-position), 8.71 (dd, ³J_{HH} = 9.0 Hz, ⁴J_{HF} = 4.8 Hz, 2H, 3,3'-bipy-position), 8.35 (td, ³J_{HH} = 9.0 Hz, ³J_{HF} = 8. Hz, ⁴J_{HH} = 2.5 Hz, 2H, 4,4'-bipy-position), 6.41 (t, 2H, ³J_{HH} = 6.0 Hz, 4-Tol-position), 6.02 (d, ³J_{HH} = 6 Hz, 2H, 3-Tol-position), 5.83 (t, ³J_{HH} = 6.0 Hz, 1H, 5-Tol-position), 2.26 (s, 3H, 1-Tol-position). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 159.1 (d, ¹J_{CF} = 256 Hz, 5,5'-bipy-position), 150.7 (s, 2,2'-bipy-position) 144.6 (d, ²J_{CF} = 33 Hz, 6,6'-bipy-position), 127.3 (d, ²J_{CF} = 19 Hz, 4,4'-bipy-position), 125.2 (d, ³J_{CF} = 7.0 Hz, 3,3'-bipy-position), 107.2 (s, 2-Tol-position), 90.9 (s, 4-Tol-position), 82.6 (s, 3-Tol-position), 79.9 (s, 5-Tol-position), 18.9 (s, 1-Tol-position). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -123.6 (s, 5,5'-position).

Synthesis of [3] - $[Ru(\eta^6-p-cymene)(5,5)^2-difluoro-2,2)^2-bipyridine)CI][PF_6]$

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(p-cym)RuCl_2]_2$ (47.8 mg, 0.08 mmol), 5,5'-difluoro-2,2'-bipyridine (30.0 mg, 0.16 mmol) and NH₄PF₆ (90.6 mg, 0.56 mmol). The product (41.1 mg, 59%) was isolated as sparkling orange crystals.

Anal. Calcd for $C_{20}H_{20}ClF_8N_2PRu$: C, 39.52; H, 3.32; N, 4.61. Found: C, 38.52; H, 3.27; N, 3.57. LRMS (ESI⁺): *m/z* 462.99 [M – PF₆]⁺ (*m*_{calc} = 463.03). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.66 (overlapping dd, ³J_{HF} = 3.2 Hz, ⁴J_{HH} = 2.5 Hz, 2H, 6,6'-bipy-position), 8.72 (dd, ³J_{HH} = 9.0 Hz, ⁴J_{HF} = 4.8 Hz, 2H, 3,3'-bipy-position), 8.36 (td, ³J_{HH} = 9.0 Hz, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 2.5 Hz, 2H, 4,4'-bipy-position), 6.34 (d, ³J_{HH} = 6.4 Hz, 2H, 5-cym-position), 6.06 (d, ³J_{HH} = 6.4 Hz, 2H, 4-cym-position), 2.60 (sept, ³J_{HH} = 7.0 Hz, 1H, 2-cym-position), 2.21 (s, 3H, 7-cym-position), 0.94 (d, ³J_{HH} = 7.0 Hz, 6H, 1-cym-position). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 159.2 (d, ¹J_{CF} = 256 Hz, 5,5'-bipy-position), 150.6 (s, 2,2'-bipy-position), 144.5 (d, ²J_{CF} = 32.5 Hz, 6,6'-bipy-position), 127.4 (d, ²J_{CF} = 18.3 Hz, 4,4'-bipy-position), 124.2 (d, ³J_{CF} = 8.0 Hz, 3,3'-bipy-position), 105.1 (s, 3-cym-position), 104.5 (s, 6-cym-position), 83.5 (s, 4-cym-position), 30.4 (s, 2-cym-position), 21.8 (s, 1-cym-position), 18.4 (s, 7-cym-position). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 d, ¹J_{PF} = 711 Hz PF₆), -123.1 (s, 5,5'-position).

Synthesis of [4] - [Ru(n⁶-hexamethylbenzene)(5,5'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(HMB)RuCl_2]_2$ (43.4 mg, 0.07 mmol), 5,5'-difluoro-2,2'-bipyridine (25.0 mg, 0.13 mmol) and NH₄PF₆ (80.1 mg, 0.49 mmol). The product (49.7 mg, 60%) was isolated as a bright orange solid. Orange crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Anal. Calcd for $C_{22}H_{24}ClF_8N_2PRu: C, 41.55; H, 3.80; N, 4.41. Found: C, 40.68; H, 3.92; N, 4.20. LRMS (ESI⁺):$ *m/z*490.95 [M - PF₆]⁺ (*m* $_{calc} = 491.06). ¹H NMR (400.13 MHz, d⁶-DMSO): <math>\delta$ (ppm) 8.89 (6,6'-bipy-position, 2H, t, ${}^{3}J_{HF}$ = 3.2 Hz, ${}^{4}J_{HH}$ = 2.3 Hz), 8.72 (3,3'-bipy-position, 2H, overlapping dd, ${}^{3}J_{HH}$ = 9.0 Hz, ${}^{4}J_{HF}$ = 4.8 Hz), 8.34 (4,4'-bipy-position, 2H, td, ${}^{3}J_{HH}$ = 9.0 Hz, ${}^{4}J_{HH}$ = 2.3 Hz), 2.06 (18H, s). ${}^{13}C{}^{1}H{}$ NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 159.5 (d, ${}^{1}J_{CF}$ = 257 Hz, 5,5'-position), 150.6 (s, 2,2'-position), 141.8 (d, ${}^{2}J_{CF}$ = 32 Hz, 6,6'-position), 127.3 (d, ${}^{2}J_{CF}$ = 19.5 Hz, 4,4'-position), 125.3 (d, ${}^{3}J_{CF}$ = 8 Hz, 3,3'-position,), 95.8 (s, 2-hmb-position) 15.0 (s, 1-hmb-position). ${}^{19}F{}^{1}H{}$ NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 (d, ${}^{1}J_{PF}$ = 711 Hz, PF₆), -122.7 (s, 5,5'-position).

Synthesis of [5] - [Ru(η^6 -benzene)(3,3'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: [(ben)RuCl₂]₂ (127 mg, 0.25 mmol), 3,3'-difluoro-2,2'-bipyridine (97.6 mg, 0.50 mmol) and NH₄PF₆ (150 mg, 0.92 mmol). The product (114 mg, 41%) was isolated as an orange powder. Orange crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day. Anal. Calcd for C₁₆H₁₂ClF₈N₂PRu: C, 34.83; H, 2.19; N, 5.08. Found: C, 35.01; H, 2.22; N, 4.95. LRMS (ESI⁺): *m/z* 407.00 [M – PF₆]⁺ (*m*_{calc} = 406.97). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.64 (d, ³J_{HH} = 5.3 Hz, 2H, 6,6'-position), 8.34 (dd, ³J_{HH} = 8.0 Hz, ³J_{HH} = 5.3 Hz, 2H, 5,5'-position), 7.97 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H, 4,4'-position), 6.29 (s, 6H, PhH). ${}^{13}C{}^{1}H$ NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 3,3'-bipy peak not resolvable, 153.9 (s, 6,6'position), 141.1 (dd, ${}^{2}J_{CF}$ = 8.2 Hz, ${}^{3}J_{CF}$ = 6.4 Hz, 2,2'-position), 130.0 – 129.0 (complex m, 5,5'-position and 4,4'-position), 87.9 (s, PhH). ${}^{19}F{}^{1}H{}$ NMR (376.50 MHz, d⁶-DMSO): δ (ppm) 69.8 (d, ${}^{1}J_{PF}$ = 711 Hz, PF₆), -103.9 (s, 3,3'-position)

Synthesis of [6] - [Ru(η⁶-tolyl)(3,3'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(Tol)RuCl_2]_2$ (68.7 mg, 0.13 mmol), 3,3'-difluoro-2,2'-bipyridine (50.0 mg, 0.26 mmol) and NH₄PF₆ (150 mg, 0.92 mmol). The product (109.4 mg, 74%) was isolated as a dark brown powder. Orange crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Numbering scheme as for the analogous $[Ru(\eta^6-tolyl)(5,5'-difluoro-2,2'-bipyridine)Cl][PF_6]$ complex [2].

Anal. Calcd for $C_{17}H_{14}CIF_8N_2PRu$: C, 36.09; H, 2.49; N, 4.95. Found: C, 35.86; H, 2.38; N, 4.89. LRMS (ESI⁺): *m/z* 420.10 [M – PF₆]⁺ (*m*_{calc} = 420.99). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.54 (d, ³J_{HH} = 5.0 Hz, 2H, 6,6'-bipy-position), 8.32 (dd, ³J_{HF} = 8.0 Hz, ³J_{HH} = 5.0 Hz, 2H, 4,4'-bipy-position), 7.95 (m, ³J_{HH} = 5.0 Hz, ³J_{HH} = 5.0 Hz, ⁴J_{HF} = 3.1 Hz, 2H, 5,5'-bipy-position), 6.30 (t, ³J_{HH} = 6.0 Hz, 2H, 4-Tol-position), 5.96 (d, ³J_{HH} = 6.0 Hz, 2H, 3-Tol-position), 5.85 (t, ³J_{HH} = 6.0 Hz, 1H, 5-Tol-position), 2.24 (s, 3H, 1-Tol-position). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): δ (ppm) 157.1 (d, ¹J_{CF} = 264 Hz, 1H, 3,3'-bipy-position), 153.2 (s, 6,6'-position), 140.8 (dd, ²J_{CF} = 8.7 Hz, ³J_{CF} = 6.4 Hz, 2,2'-position), 129.3 (s, 5,5'-position), 129.0 (d, ²J_{CF} = 12.5 Hz, 4,4'-position), 106.8 (s, 2-Tol-position), 91.2 (s, 4-Tol-position), 82.9 (s, 3-Tol-position), 80.2 (s, 5-Tol-position), 18.7 (s, 1-Tol-position). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) 69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -108.1 (s, 3,3'-position).

Synthesis of [7] - [Ru(η^6 -*p*-cymene)(3,3'-difluoro-2,2'-bipyridine)CI][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(p-cymene)RuCl_2]_2$ (47.8 mg, 0.078 mmol), 3,3'-difluoro-2,2'-bipyridine (30.0 mg, 0.16 mmol) and NH₄PF₆ (90.6 mg, 0.56 mmol). The product (41.1 mg, 59%) was isolated as an orange crystalline solid. Orange prism shaped crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Numbering scheme as for the analogous $[Ru(\eta^6-p-cymene)(5,5'-difluoro-2,2'-bipyridine)Cl][PF_6] complex [3].$

Anal. Calcd for $C_{20}H_{20}CIF_8N_2PRu: C, 39.52; H, 3.32; N, 4.61.$ Found: C, 38.50; H, 3.31; N, 4.79. LRMS (ESI⁺): *m/z* 463.06 [M – PF₆]⁺ (*m*_{calc} = 463.03). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.52 (d, ³J_{HH} = 5.0 Hz, 2H, 6,6'-position), 8.34 (dd, ³J_{HF} = 8.3 Hz, ³J_{HH} = 5.0 Hz, 2H, 4,4'-position), 7.97 (5,5'-position, 2H, m, ³J_{HH} = 5.0 Hz, ³J_{HH} = 5.0 Hz, ⁴J_{HF} = 3.1 Hz), 6.23 (d, ³J_{HH} = 6.4 Hz, 2H, 5-cym-position), 6.00 (d, ³J_{HH} = 6.4 Hz, 2H, 4-cym-position), 2.64 (sept, ³J_{HH} = 7.0 Hz, 1H, 2-cym-position), 2.17 (s, 3H, 7-cym-position), 1.00 (d, ³J_{HH} = 7.0 Hz, 6H, 1-cym-position), 140.5 (dd, ²J_{CF} = 6.8 Hz, ³J_{CF} = 4.0 Hz, 2,2'-position), 129.4 (s, 5,5'-position), 128.7 (d, ²J_{CF} = 12.4 Hz, 4,4'-position), 105.1 (s, 3-cym-position), 104.5 (s, 6-cym-position), 86.7 (s, 5-cym-position), 84.2 (s, 4-cym-position), 30.4 (s, 2-cym-position), 21.7 (s, 1-cym-position), 18.2 (s, 7-cym-position). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -103.9 (s, 3,3'-position).

Synthesis of [8] - [Ru(η^6 -hexamethylbenzene)(3,3'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: [(HMB)RuCl₂]₂ (86.9 mg, 0.13 mmol), 5,5'-difluoro-2,2'-bipyridine (50 mg, 0.26 mmol) and NH₄PF₆ (150 mg, 0.92 mmol). The product (90.8 mg, 55%) was isolated as a bright orange solid. Orange prism shaped crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day. Numbering scheme as for the analogous [Ru(η^6 -hexamethylbenzene)(5,5'-difluoro-2,2'-bipyridine)Cl][PF₆] complex [4].

Anal. Calcd for $C_{22}H_{24}ClF_8N_2PRu$: C, 41.55; H, 3.80; N, 4.41. Found: C, 41.45; H, 3.73; N, 4.32. LRMS (ESI⁺): *m/z* 490.98 [M - PF₆]⁺ (*m*_{calc} = 491.06). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 8.87 (d, ³J_{HH} = 5.0 Hz, 2H, 6,6'-position), 8.27 (m, ³J_{HF} = 8.0 Hz ³J_{HH} = 5.0 Hz, 2H, 4,4'-position), 7.94 (m, ³J_{HH} = 5.0 Hz, ³J_{HH} = 5.0 Hz, ⁴J_{HF} = 3.0 Hz, 2H, 5,5'-position), 2.02 (s, 18H). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): 159.2 (d, ¹J_{CF} = 265 Hz, 1H, 3,3'-position), 151.1 (s, 6,6'-position), 140.6 (dd, ²J_{CF} = 8.0 Hz, ³J_{CF} = 6.0 Hz, 2,2'-position), 129.6 (s, 5,5'-position), 128.7 (d, ²J_{CF} = 11 Hz 4,4'-position), 96.1 (s, 2-hmb-position), 15.0 (s, 1-hmb-position). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) -69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -104.2 (s, 3,3'-position).

Synthesis of [9] - [Ru(benzene)(6,6'-difluoro-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(PhH)RuCl_2]_2$ (13.0 mg, 0.026 mmol), 6,6'-difluoro-2,2'-bipyridine (10.0 mg, 0.052 mmol) and NH₄PF₆ (25.4 mg, 0.16 mmol). The product (10 mg, 35%) was isolated as an orange solid. Yellow prism like crystals were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Anal. Calcd for $C_{18}H_{12}CIF_{12}N_2PRu$: C, 34.83; H, 2.19; N, 5.08. Found: C, 34.61; H, 2.33; N, 4.84. LRMS (ESI⁺): *m/z* 407.02 [M - PF₆]⁺ (*m*_{calc} = 406.97). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 8.63 (d, ³J_{HH} = 7.9 Hz, 2H, 3,3'-position), 8.52 (dd, ³J_{HH} = 8.5 Hz, ³J_{HH} = 7.9 Hz, 2H, 4,4'-position), 7.91 (d, ³J_{HH} = 8.5 Hz, 2H, 5,5'-position), 6.32 (s, 6H, PhH). Lack of sample restricted analysis to proton and fluorine NMR. ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) 69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -49.7 (s, 6,6'-position)

Synthesis of [10] - Synthesis of [Ru(benzene)(5,5'-bis(trifluoromethyl)-2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: [(PhH)RuCl₂]₂ (51.4 mg, 0.10 mmol), 5,5'-bis(trifluoromethyl)-2,2'-bipyridine (60.0 mg, 0.21 mmol) and NH₄PF₆ (100 mg, 0.62 mmol). The product (80.1 mg, 60%) was isolated as an orange solid. Orange prism shaped crystals for X-ray diffraction were obtained from a vapour diffusion method with diethyl ether into a concentrated acetone solution over 1 day.

Anal. Calcd for $C_{18}H_{12}CIF_8N_2PRu$: C, 33.17; H,1.86; N, 4.30. Found: C, 33.15; H, 1.80; N, 4.21. LRMS (ESI⁺): *m/z* 507.00 [M - PF₆]⁺ (*m*_{calc} = 506.96). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.95 (s, 2H, 6,6'-position), 9.04 (d, ³J_{HH} = 8.7 Hz, 2H, 3,3'-position), 8.86 (d, ³J_{HH} = 8.7 Hz, 2H 4,4'-position), 6.35 (s, 6H, PhH). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): 156.6 (s, 2,2'-position), 152.7 (q, ³J_{CF} = 4.1 Hz, 6,6'-position), 137.8 (q, ³J_{CF} = 3.1 Hz, 4,4'-position), 128.7 (q, ²J_{CF} = 34 Hz, 5,5'-position,), 125.5 (s, 3,3'-position) 122.1 (q, ¹J_{CF} = 278 Hz, <u>C</u>F₃), 87.5 (s, PhH). ¹⁹F{¹H} NMR (376.50 MHz, d⁶-DMSO): δ (ppm) 69.8 (d, ¹J_{PF} = 711 Hz, PF₆), -60.1 (s, CF₃ groups).

Synthesis of [11] - [Ru(η⁶-benzene)(2,2'-bipyridine)Cl][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: [(benzene)RuCl₂]₂ (120 mg, 0.24 mmol), 2,2'-bipyridine (76.0 mg, 0.48 mmol)

and NH_4PF_6 (465 mg, 1.44 mmol). The product (159 mg, 74%) was isolated as a yellow/orange solid.

Anal. Calcd for C₁₆H₁₄ClF₆N₂PRu: C, 37.26; H, 2.74; N, 5.43. Found: C, 37.07; H, 2.57; N, 5.28. LRMS (ESI⁺): *m/z* 371.02 [M – PF₆]⁺ (*m*_{calc} = 370.99). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.63 (d, ³J_{HH} = 5.6 Hz, 2H, 6,6'-position), 8.64 (d, ³J_{HH} = 8.1 Hz, 2H, 3,3'-position), 8.29 (overlapping dd, ³J_{HH} = 8.1 Hz, ³J_{HH} = 7.9 Hz, 2H, 4,4'-position), 7.79 (overlapping dd, ³J_{HH} = 7.9 Hz, ³J_{HH} = 5.6 Hz, 2H, 5,5'-position), 6.25 (s, 6H, PhH). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): 156.0 (2,2'-position), 154.5 (6,6'-position), 140.0 (4,4'-position) 127.4 (5,5'-position), 123.7 (3,3'-position), 87.0 (PhH, s).

Synthesis of [12] - [Ru(η⁶-*p*-cymene)(2,2'-bipyridine)CI][PF₆]

A procedure entirely analogous to the synthesis of [1] was adopted, with the following masses used: $[(p-cymene)RuCl_2]_2$ (147 mg, 0.24 mmol), 2,2'-bipyridine (76.0 mg, 0.48 mmol) and NH₄PF₆ (465 mg, 1.44 mmol). The product (175 mg, 64%) was isolated as a yellow/orange solid.

Numbering scheme as for the analogous $[Ru(\eta^6-p-cymene)(5,5'-difluoro-2,2'-bipyridine)Cl][PF_6] complex [3].$

Anal. Calcd for $C_{20}H_{22}CIF_6N_2PRu$: C, 42.00; H, 3.88; N, 4.90. Found: C, 41.89; H, 3.86; N, 4.78 LRMS (ESI⁺): *m/z* 427.06 [M – PF₆]⁺ (*m*_{calc} = 427.05). ¹H NMR (400.13 MHz, d⁶-DMSO): δ (ppm) 9.54 (d, ³J_{HH} = 5.8 Hz, 2H, 6,6'-position), 8.64 (d, ³J_{HH} = 8.0 Hz, 2H, 3,3'-position), 8.29 (overlapping dd, ³J_{HH} = 8.6 Hz, ³J_{HH} = 8.0 Hz, 2H, 4,4'-position), 7.79 (overlapping dd, ³J_{HH} = 6.5 Hz, 2H, 5,5'-position), 6.21 (d, ³J_{HH} = 6.1 Hz, 2H, 5-cym-position), 5.98 (d, ³J_{HH} = 6.1 Hz, 2H, 4-cym-position), 2.57 (sept, ³J_{HH} = 6.9 Hz, 1H, 2-cym-position), 2.18 (s, 3H, 7-cym-position), 0.94 (d, ³J_{HH} = 6.9 Hz, 6H, 1-cym-position). ¹³C{¹H} NMR (100.57 MHz, d⁶-DMSO): 155.7 (2,2'-position), 154.3 (6,6'-position), 139.9 (4,4'-position) 127.5 (5,5'-position), 21.6 (1-cym-position), 18.3 (7-cym-position).

Crystallographic data for ruthenium complexes

Below is the crystallographic data for the fluorinated bipyridine complexes [1]-[10] and the ruthenium bipyridine with cysteine ligand, complex [13].

	[1]	[2]	[3]	[4]	[10]		
	Bond Lengths						
Ru-Cl	2.3754(7)	2.3773(12)	2.3898(7)	2.3809(6)	2.391(2)		
Du N	2.0827(15)	2.085(4)	2.094(2)	2.1021(19)	2.079(6)		
KU-N		2.087(4)	2.087(2)	2.109(2)	2.096(6)		
Ru-Arene	1 691	1 699	1 697	1 702	1 69/		
(centroid)	1.001	1.000	1.087	1.705	1.004		
Bond Angles							
N-Ru-N	77.06(8)	76.92(14)	77.02(9)	75.93(8)	77.1(2)		

Table S1. Key bond lengths (Å) and angles (deg) for complexes [1] - [4] and [10].

Complex	[1]		[2]	[3]		[4]	
CCDC No.	18676	61	1867	662	1867663		1867664	
Empirical formula	[C ₁₆ H ₁₂ CIF ₂ N ₂	2Ru] ⁺ (PF ₆ ⁻)	$[C_{17}H_{14}CIF_2N_2Ru]^{+}(PF_6^{-})$		$[C_{20}H_{20}CIF_2N_2Ru]^{+}(PF_6)$		$[C_{22}H_{24}CIF_2N_2Ru]^+(PF_6^-)$	
Formula weight	551.	77	565	.79	607.8	37	6	35.92
Temperature	180(2) K	180(2) K	180(2)) K	18	0(2) K
Wavelength	0.710	7 Å	1.54 <i>°</i>	18 Å	0.7107	′Å	1.5	5418 Å
Crystal system	Orthorho	ombic	Tricl	inic	Orthorho	mbic	Tr	riclinic
Space group	Pbci	n	P-	-1	Pca2	1		P–1
Unit cell dimensions	a = 8.18600(10) Å	α = 90°	a = 7.1872(3) Å	α = 99.964(2)°	a = 12.0020(2) Å	$\alpha = 90^{\circ}$	a = 8.4825(3) Å	α = 103.1690(11)°
	b = 12.7339(2) Å	β = 90°	b = 11.6858(4) Å	β = 97.263(2)°	b = 13.7944(2) Å	β = 90°	b = 11.8360(4) Å	β = 94.0286(11)°
	c = 17.9660(3) Å	γ = 90°	c = 11.9743(4) Å	γ = 101.058(2)°	c = 13.2815(2) Å	γ = 90°	c = 12.4837(4) Å	γ = 103.4380(10)°
Volume	1872.77	(5) Å ³	958.79(6) Å ³		2198.89(6) Å ³		1176.89(7) Å ³	
Z	4		2		4		2	
Density (calculated)	1.957 m	ıg/m ³	1.960 mg/m ³		1.836 mg/m ³		1.795 mg/m ³	
Absorption coefficient	1.147 r	nm⁻¹	9.488 mm ⁻¹		0.986 mm ⁻¹		7.808 mm ⁻¹	
F(000)	108	0	55	6	1208			636
Crystal size	0.30 x 0.23 x	0.18 mm ³	0.04 x 0.04	x 0.03 mm ³	0.32 x 0.30 x	0.18 mm ³	0.18 x 0.1	2 x 0.06 mm ³
Theta range	3.73 to 3	2.02°	3.80 to	66.73°	3.70 to 3	3.70°	3.67 to 67.18°	
Index ranges	-12<=h<=12, -	17<=k<=19,	-8<=h<=8, -7	13<=k<=13,	-18<=h<=18, -21<=k<=21,		-10<=h<=10,	
	-26<=l<	<=26	-14<=	<=14	-20<=l<=20		-13<=k<=14, -14<=l<=14	
Reflections collected	1632	24	120	13	24942		12913	
Independent reflections	3323 [R(int)	= 0.035]	3393 [R(int	t) = 0.049]	8467 [R(int) = 0.031]		4156 [R(int) = 0.025]	
Completeness to $\theta(\max)$	99.3	%	99.6	3 %	99.8 %		98	8.8 %
Data / restraints / param.	3323 / 0	/ 135	3393 / 0 / 275		8467 / 1 / 301		4156 / 34 / 360	
Goodness-of-fit on F ²	1.09	9	1.0)5	1.00)		1.08
R indices [I>2sigma(I)]	R1 = 0.032	wR2 = 0.097	R1 = 0.040	wR2 = 0.091	R1 = 0.027	wR2 = 0.069	R1 = 0.024	wR2 = 0.059
R indices (all data)	R1 = 0.039	wR2 = 0.100	R1 = 0.054	wR2 = 0.096	R1 = 0.032	wR2 = 0.071	R1 = 0.025	wR2 = 0.060
Largest diff. peak and hole	0.87 and -0	.78 e.Å ⁻³	1.38 and -	0.59 e.Å ⁻³	0.74 and -0.	.83 e.Å ⁻³	0.66 and	d -0.62 e.Å⁻³
Flack parameter					-0.030(14)		

Complex	[5	5]	[6]		[7]		[8]		
CCDC No.	1867	665	18676	66	1867667		1867668		
Empirical formula	[C ₁₆ H ₁₂ CIF ₂ N	$I_2Ru]^{\dagger}(PF_6^{-})$	[C ₁₇ H ₁₄ CIF ₂ N ₂	$[C_{17}H_{14}CIF_2N_2Ru]^+(PF_6)$		$[C_{20}H_{20}CIF_2N_2Ru]^{+}(PF_6^{-})$		$[C_{22}H_{24}CIF_2N_2Ru]^{+}(PF_6^{-})$	
Formula weight	551	.77	565.7	79	607.87		635	.92	
Temperature	180(2) K	180(2) K	180(2) K	180(2) K	
Wavelength	0.710	07 Å	1.5418	3 Å	1.54	18 Å	1.54 ⁻	18 Å	
Crystal system	Tricl	inic	Orthorho	ombic	Orthorh	nombic	Orthorh	ombic	
Space group	P-	-1	Cmc	2 ₁	Pca	a2 ₁	Pna	a2 ₁	
Unit cell dimensions	a = 8.0630(5) Å	α =	a = 11.8675(3) Å	α = 90°	a = 12.3683(3)	α = 90°	a = 18.4489(5) Å	α = 90°	
		104.378(3)°			Å				
	b = 8.3719(5) Å	$\beta = 95.336(3)^{\circ}$	b = 11.3437(3) Å	β = 90 °	b = 13.3931(3) Å	$\beta = 90^{\circ}$	b = 7.8290(2) Å	β = 90 °	
	c = 13.8505(11) Å	γ = 96.409(3)°	c = 14.2301(4) Å	γ = 90°	c = 13.3561(3) Å	γ = 90°	c = 16.0806(4) Å	γ = 90°	
Volume	892.90	(11) Å ³	1915.68(9) Å ³		2212.44(9) Å ³		2322.62(10) Å ³		
Z	2)	4		4		4		
Density (calculated)	2.052 r	mg/m ³	1.962 mg/m ³		1.825 mg/m ³		1.819 mg/m ³		
Absorption coefficient	1.203	mm ⁻¹	9.498 mm ⁻¹		8.273 mm ⁻¹		7.912 mm ⁻¹		
F(000)	54	0	1112		12	08	12	72	
Crystal size	0.10 x 0.04	x 0.01 mm ³	0.12 x 0.10 x 0.02 mm ³		0.25 x 0.06	x 0.02 mm ³	0.40 x 0.08	x 0.03 mm ³	
Theta range	3.53 to	25.14°	5.39 to 7	0.42°	3.30 to	66.78°	4.79 to	66.93°	
Index ranges	-9<=h<=9,	-9<=k<=9,	-14<=h<=14, -1	12<=k<=13,	-14<=h<=14, -15<=k<=15,		-21<=h<=21, -9<=k<=9,		
	-14<=	l<=16	-17<= <	=17	-13<=l<=15		-19<=l<=16		
Reflections collected	758	89	1427	'9	27010		14417		
Independent reflections	3118 [R(int	t) = 0.105]	1909 [R(int)	= 0.042]	3787 [R(int) = 0.043]		3794 [R(int) = 0.042]		
Completeness to $\theta(\max)$	97.6	3 %	99.9 %		99.9 %		99.5 %		
Data / restraints / param.	3118 / 0	0 / 262	1909 / 43	6 / 164	3787 / 1 / 301		3794 / 1	1 / 322	
Goodness-of-fit on F ²	1.1	10	1.03	3	1.0)5	1.0)4	
R indices [I>2sigma(I)]	R1 = 0.072	wR2 = 0.110	R1 = 0.033	wR2 = 0.087	R1 = 0.019	wR2 = 0.044	R1 = 0.025	wR2 = 0.054	
R indices (all data)	R1= 0.124	wR2 = 0.128	R1 = 0.035	wR2 = 0.088	R1 = 0.022	wR2 = 0.045	R1 = 0.030	wR2 =0.056	
Largest diff. peak and	0.73 and -	0.76 e.Å⁻³	0.71 and -0.48 e.Å ⁻³		0.25 and -0.31 e.Å ⁻³		0.45 and -0.30 e.Å ⁻³		
hole									
Flack parameter			0.003(17)	0.01	7(6)	0.01	7(6)	

 Table S3. X-ray crystallographic data for complexes [5] to [8].

Complex	[9]		[10]		[13]		
CCDC No.	1867	7669	1867	1867670		1867671	
Empirical formula	[C ₁₆ H ₁₂ CIF ₂ N	$N_2Ru]^{+}(PF_6^{-})$	[C ₁₈ H ₁₂ CIF ₁₂ N	$N_2Ru]^+(PF_6^-)$	[C ₂₁ H ₂₂ CIN ₃ O ₃ R	$[uS]^{+}(PF_{6}^{-})(H_{2}O)$	
Formula weight	551	.77	651	.79	660).53	
Temperature	180((2) K	180(2) K	180	(2) K	
Wavelength	0.71	07 Å	0.710	07 Å	0.71	07 Å	
Crystal system	Mono	oclinic	Orthorh	nombic	Mono	oclinic	
Space group	P2	₁ /n	Pca	a2 ₁	F	2	
Unit cell dimensions	a = 11.8901(4) Å	α = 90 °	a = 16.0681(5) Å	$\alpha = 90^{\circ}$	a = 14.2643(3) Å	α = 90°	
	b = 11.9766(4) Å	β = 101.146(2)°	b = 8.0666(3) Å	β = 90 °	b = 8.4893(2) Å	β = 108.5325(10)°	
	c = 12.8399(5) Å	γ = 90°	c = 15.9972(5) Å	γ = 90 °	c = 21.3553(6) Å	γ = 90°	
Volume	1793.95	5(11) Å ³	2073.48	B(12) Å ³	2451.9	0(10) Å ³	
Z	4		4	4		4	
Density (calculated)	2.043	mg/m ³	2.088 mg/m ³		1.789 mg/m ³		
Absorption coefficient	1.198 mm ⁻¹		1.080 mm ⁻¹		0.871 mm⁻¹		
F(000)	1080		12	72	13	328	
Crystal size	0.10 x 0.05	x 0.03 mm ³	0.10 x 0.07	x 0.05 mm ³	0.18 x 0.02	x 0.02 mm ³	
Theta range	3.66 to	27.50°	3.58 to	27.50°	3.52 to	25.03°	
Index ranges	-15<=h<=15,	-15<=k<=15,	-20<=h<=16,	-10<=k<=10,	-16 <h<15< th=""><th>, -9<k<10,< th=""></k<10,<></th></h<15<>	, -9 <k<10,< th=""></k<10,<>	
	-16<=I<=16		-20<=	I<=20	-25<	<l>1<21</l>	
Reflections collected	114	126	8837		12840		
Independent reflections	4031 [R(in	t) = 0.086]	3784 [R(int) = 0.059]		7477		
Completeness to θ(max)	97.	7%	97.6 %		98.3		
Data / restraints / param.	4031 /	0 / 262	3784 / 1 / 316		7477	/2/673	
Goodness-of-fit on F2	1.03		1.0)7	1.	00	
R indices [l>2sigma(l)]	R1 = 0.051	wR2 = 0.085	R1 = 0.041	wR2 = 0.074	R1 = 0.039	wR2 = 0.075	
R indices (all data)	R1 = 0.105	wR2 = 0.103	R1= 0.061	wR2 = 0.082	R1 = 0.056	wR2 = 0.080	
Largest diff. peak and hole	0.65 and -	0.99 e.Å ⁻³	0.58 and -0.66 e.Å ⁻³		0.59 and -0.64 e.Å ⁻³		
Flack parameter			-0.04	4(4)	-0.01(3)		

 Table S4. X-ray crystallographic data for complexes [9] to [13].

Structures of complexes [1] – [10] with displacement ellipsoids at 50% probability

NMR of Ru(II) Arene complexes with amino acids and glutathione

Figure S2. The ¹⁹F{¹H} NMR peaks of $[Ru(\eta_6-benzene)(5,5'-difluorobipyridine)()]^+$ when complex [1] with both chiral amino acids and achiral small molecules (2 mM Ru, 3 eq. AA, 8 hours, 310 K). The chemical shift scale is the same for all spectra, which are aligned to the Ru-[Adduct] peak in each case.

Figure S3. The ¹⁹F{¹H} NMR peaks of [Ru(η_6 -benzene)(5,5'-difluorobipyridine)(N-accysteine-OMe)]⁺ when complex [1] is incubated with N-acetyl cysteine methyl ester (2 mM Ru, 3 eq amino acid) at a temperature range 278 K – 328 K

Figure S4. Plots showing the variation of the concentration of $[Ru(\eta_6-arene)(5,5)^2 - difluorobipyridine)(N-Ac-Cysteine-OMe)]^+$ products with time during the reaction of complexes [1] (top left), [2] (top left), [3] (bottom left) and 4 (bottom right) (2 mM), with N-acetyl-cysteine-methyl ester (3 eq, pD 7.2, 310 K) based on the integration of Ru-cys peak. The curves in are computer-fits to first-order kinetics giving the rate constants listed in Table 2.

Figure S5. A time series of ${}^{19}F{}^{1}H$ NMR spectra when complex [1] is incubated with N-Ac-Cys-OMe (2 mM Ru, 3 eq. amino acid, 310 K).

Figure S6. A comparison of ¹⁹F{¹H} NMR (bottom) and ¹H spectra (top) when complex [1] is incubated with a mixture protected amino acids, N-Ac-Cys-OMe, N-Z-Glu-OMe, N-Bz-His-OMe, N-Ac-Met-OMe, and a mixture of all amino acids together, (4 mM Ru, 1.5 eq. each amino acid, 310 K).

Figure S7. A series of ¹⁹F{¹H} NMR spectra when complex [2] is incubated with the protected amino acids, N-Ac-Cys-OMe, N-Z-Glu-OMe, N-Bz-His-OMe, N-Ac-Met-OMe, and a mixture of all amino acids together, (2 mM Ru, 3 eq. amino acid, 24 hr, 310 K).

Figure S8. A series of ¹⁹F{¹H} NMR spectra when complex [3] is incubated with the protected amino acids, N-Ac-Cys-OMe, N-Z-Glu-OMe, N-Bz-His-OMe, N-Ac-Met-OMe, and a mixture of all amino acids together, (2 mM Ru, 3 eq. amino acid, 24 hr, 310 K).

Figure S9. A series of ¹⁹F{¹H} NMR spectra when complex [4] is incubated with the protected amino acids, N-Ac-Cys-OMe, N-Z-Glu-OMe, N-Bz-His-OMe, N-Ac-Met-OMe, and a mixture of all amino acids together, (2 mM Ru, 3 eq. amino acid, 24 hr, 310 K).

Figure S10. A time series of ${}^{19}F{}^{1}H$ NMR spectra when complex [1] is incubated with N-Ac-Cys-OOH (2 mM Ru, 3 eq. amino acid, 310 K, 0 – 24 hr).

Figure S12. A series of ¹⁹F{¹H} NMR spectra when complex [3] is incubated with defined mixtures of reduced and oxidised glutathione (2 mM Ru, 3 eq. glutathione, 24 hr, 310 K).

Figure S13. A series of ${}^{19}F{}^{1}H$ NMR spectra when complex [4] is incubated with defined mixtures of reduced and oxidised glutathione (2 mM Ru, 3 eq. glutathione, 24 hr, 310 K).

Table S5.	¹⁹ F{ ¹ H} NMR	chemical shift values	of complexes	[1], [2], [3],	[4], [5] and [7	7]
incubated	with N-acetyl	cysteine methyl ester	r (2 mM Ru, 3 e	eq. amino a	cid, 24 hr, 3 ⁻	10 K).

	Chemical Shift / ppm				
	D_2O	CI	Cys	Phos	
Complex [1]	-119.63	-120.64	-121.04	-121.82	
Complex [2]	-119.60	-120.60	-120.86, -120.90	-121.51	
Complex [3]	/	-120.15	-120.43, -120.50	/	
Complex [4]	/	-120.52	-120.77, -120.88	/	
Complex [5]	/	-104.42	-104.16	/	
Complex [7]	/	-104.86	-104.72	/	

ESI-MS of Ru(II) arene complexes in phosphate buffer

Table S6. ESI-MS data from the incubations of complexes [1] - [4] in deuterated phosphate, focussed on the presence of a phosphate bound ruthenium adduct. Sample diluted into acetonitrile:water 1:1.

Assignment	Molecular Formula	Observed m/z	Theoretical m/z						
	I[1]								
Ru-Cl	C16H12CIF2N2Ru	406.82	406.97						
Ru-Phosphate	C16H14F2N2O4PRu	468.77	468.97						
	[2]								
Ru-Cl	C17H14CIF2N2Ru	420.83	420.99						
Ru-Phosphate	C17H16F2N2O4PRu	482.84	482.99						
	[3]								
Ru-Cl	C20H20CIF2N2Ru	462.85	463.03						
Ru-Phosphate	C20H22F2N2O4PRu	524.87	525.03						
[4]									
Ru-Cl	C22H24CIF2N2Ru	490.93	491.06						
Ru-Phosphate	C22H26F2N2O4PRu	552.96	553.06						

ESI-MS of Ru(II) arene complexes with amino acids and glutathione

Table S7. ESI-MS data from the incubations of complexes [1] - [4] with the protected amino acids, N-Ac-Cys-OMe, N-Z-Glu-OMe, N-Bz-His-OMe, N-Ac-Met-OMe and reduced glutathione (2 mM Ru, 3 eq. amino acid, 24 hr, 310 K). Samples are diluted in D₂O, therefore the titratable groups present remain deuterated.

Assignment	Molecular Formula	Observed m/z	Theoretical m/z
	[1] with Amino Acids and G	lutathione	
Ru-Cl	C16H12CIF2N2Ru	407.06	406.97
Ru-Cys	C22H21DF2N3O3RuS	549.09	549.05
Ru-Glu	C30H27DF2N3O6Ru	667.15	667.11
Ru-His	C30H25D2F2N5O3Ru	323.68	323.33
Ru-Met	C24H26DF2N3O3RuS	289.10	288.82
Ru-GSH	C26H23D5F2N5O6RuS	683.13	683.11
	[2] with Amino Acids and G	lutathione	
Ru-Cl	C17H14CIF2N2Ru	421.18	420.83
Ru-Cys	C23H23DF2N3O3RuS	563.01	562.60
Ru-Glu	C31H29DF2N3O6Ru	681.07	681.12
Ru-His	C31H27D2F2N5O3Ru	330.79	330.34
Ru-Met	C25H28DF2N3O3RuS	296.14	295.83
Ru-GSH	C27H25D5F2N5O6RuS	697.08	697.12
	[3] with Amino Acids and G	lutathione	
Ru-Cl	C20H20CIF2N2Ru	462.98	463.03
Ru-Cys	C26H29DF2N3O3RuS	605.00	605.11
Ru-Glu	C34H35DF2N3O6Ru	722.96	723.17
Ru-His	C34H33D2F2N5O3Ru	350.39	351.60
Ru-Met	C28H34DF2N3O3RuS	318.30	317.08
Ru-GSH	C30H31D5F2N5O6RuS	740.31	739.17
	[4] with Amino Acids and G	lutathione	
Ru-Cl	C22H24CIF2N2Ru	491.16	491.06
Ru-Cys	C28H33DF2N3O3RuS	633.16	633.14
Ru-Glu	C36H39DF2N3O6Ru	751.16	751.20
Ru-His	C36H37D2F2N5O3Ru	365.71	365.61
Ru-Met	C30H38DF2N3O3RuS	331.28	331.09
Ru-GSH	C32H35D5F2N5O6RuS	768.24	767.20

References

- 1 M. A. Bennett and A. K. Smith, J. Chem. Soc. Dalt. Trans., 1974, **0**, 233.
- 2 R. Lalrempuia and M. Rao Kollipara, *Polyhedron*, 2003, **22**, 3155–3160.