Electronic Supplementary Information

Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting

Enlai Hu,^{‡a} Yafei Feng,^{‡a} Jianwei Nai,^b Dian Zhao,^a Yong Hu,^{*a} and Xiong Wen (David) Lou^{*b}

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China. E-mail: yonghu@zjnu.edu.cn

^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore. E-mail: davidlou88@gmail.com; xwlou@ntu.edu.sg Webpage: http://www.ntu.edu.sg/home/xwlou/

Fig. S1 XRD Pattern of the as-prepared Ag₂WO₄ solid nanobricks.

Fig. S2 FESEM images of Ag₂WO₄ obtained by using different amounts of PVP in both AgNO₃ and Na₂WO₄ solution: (a, b) 0.25 g, (c, d) 0.75 g, and (e, f) 1.0 g.

Fig. S3 FESEM images of (a, b) Ni-Co precursor nanosheets, (c, d) Ni-Co-O nanosheets, and (e, f)

Ni-Co-P nanosheets.

Fig. S4 XRD patterns of the as-prepared hierarchical (a) Ni-Co-O and Ni-Co-P HNBs and (b) Ni-Co-O and Ni-Co-P nanosheets.

Fig. S5 (a) EDX spectrum and (b) atomic percentage of the as-prepared Ni-Co-P HNBs.

Fig. S6 High-resolution XPS spectra of the Ag-incorporated Ni-Co-P HNBs: (a) Ni 2p, (b) Co 2p, (c) P 2p, and (d) Ag 3d.

Fig. S7 N₂ adsorption-desorption isotherms and pore-size distribution curves of the as-prepared (a) hierarchical Ni-Co-P HNBs and (b) Ni-Co-P nanosheets.

Fig. S8 Polarization curves of the hierarchical Ni-Co-P HNBs with the different mass loading on Ni foam substrate for (a) OER and (b) HER.

Fig. S9 Polarization curves of pristine Ni foam substrate for (a) OER and (b) HER.

Fig. S10 Nyquist plots of the hierarchical Ni-Co-P HNBs and Ni-Co-P nanosheets for (a) OER and (b) HER.

Fig. S11 FESEM images of Ni-Co-P HNBs after (a, b) OER and (c, d) HER durability tests.

Fig. S12 Polarization curves of (a) RuO₂ for OER, (b) Pt/C (20 wt.% Pt) for HER, and (c) Pt/C||RuO₂ for overall water splitting. To reach the current density of 10 mA cm⁻², RuO₂ needs an overpotential of 290 mV for OER (a), while Pt/C needs an overpotential of 31 mV for HER (b). For the overall water splitting (c), RuO₂ electrode and Pt/C electrode were used as the anode and cathode, respectively. The cell voltage is 1.57 V at the current density of 10 mA cm⁻².

Fig. S13 CV curves of (a) Ni-Co-P HNBs and (c) Ni-Co-P nanosheets in the double layer region at scan rates of 5, 10, 15, 20, 25 and 30 mV s⁻¹ in 1.0 M KOH; (b) and (d) current density as a function of scan rate derived from (a) and (c), respectively. As can be seen in this figure, the Ni-Co-P HNBs exhibit higher double-layer capacitance (C_{dl}) of 60.3 mF cm⁻², while it is only 51.6 mF cm⁻² for Ni-Co-P nanosheets, indicating a higher electrochemical active surface area (ECSA) for the Ni-Co-P HNBs since the ECSA is generally proportional to the C_{dl} of the catalyst.

Fig. S14 The crystal structure of (a) Ni-Co-P and (b) Ag-incorporated Ni-Co-P material for the

calculation of the HER Gibbs free-energy change.

Catalysts	Overpotential (mV) at 10 mA cm ⁻²	Reference
Ni ₂ P nanoparticles	290	<i>Energy Environ. Sci.</i> 2015 , <i>8</i> , 2347
np-(Co _{0.52} Fe _{0.48}) ₂ P	270	Energy Environ. Sci. 2016 , 9, 2257
MnCoP nanoparticles	330	J. Am. Chem. Soc. 2016 , 138, 4006
Co ₄ N/CC	257	Angew. Chem. Int. Ed. 2015 , 54, 14710
Co-P film	340	Angew. Chem. Int. Ed. 2015 , 54, 6251
CoP MNA	290	<i>Adv. Funct. Mater.</i> 2015 , <i>25</i> , 7337
NiCoP@NF	280	Nano Lett. 2016 , 16, 7718
CoP/rGO hybrids	340	Chem. Sci. 2016 , 7, 1690.
FeP	288	Chem. Eur. J. 2015 , 21, 18062.
NiCoP nanoparticle	310	<i>Adv. Mater. Interfaces</i> 2016 , 3, 1500454.
hierarchical Ni-Co-P HNBs	270	This work

 Table S1. OER performances of representative electrocatalysts in alkaline electrolyte.

Catalysts	Overpotential (mV) at 10 mA cm ⁻²	Reference
CoP/Ti	128	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1602441
Ni ₂ P particles	~220	<i>Energy Environ. Sci.</i> 2015 , 8, 2347
NiFe LDH/NF	210	Science 2014, 345, 1593
CoOx@CN	232	J. Am. Chem. Soc. 2015 , 137, 2688
Ni ₃ FeN-NPs	158	<i>Adv. Energy Mater.</i> 2016 , <i>6</i> , 1502585
CoNiP@NF	155	J. Mater. Chem. A 2016 , 4, 10195
NiCoP-2.5-300 hollow polyhedrons	124	ACS Appl. Mater. Interfaces 2017 , 9, 5982
Ni0.23C00.77P films	128	<i>Adv. Funct. Mater.</i> 2016 , <i>26</i> , 7644
NiFeOx	88	Nat. Commun. 2015, 6, 7261
hierarchical Ni-Co-P HNBs	107	This work

Table S2. HER performances of representative electrocatalysts in alkaline electrolyte.

Catalysts	Potential (V) at 10 mA cm ⁻²	Reference
NiFeOx	1.51	Nat. Commun. 2015, 6, 7261
Ni5P4 films	1.69	Angew. Chem. Int. Ed. 2015 , 127, 12538
Co-P films	1.65	Angew. Chem. Int. Ed. 2015 , 54, 6251
Co _x PO ₄ /CoP	1.91	Adv. Mater. 2015, 27, 3175
NiCo2O4	1.65	Angew. Chem. Int. Ed. 2016 , 55, 6290
Ni ₂ P	1.63	Energy Environ. Sci. 2015 , 8, 2347
CoP/GO-400	1.70	Chem. Sci. 2016, 7, 1690
CoSe film	1.65	Chem. Commun. 2015 , 51, 16683
NiCoP nanoparticle	1.64	<i>Adv. Mater. Interfaces</i> 2016 , <i>3</i> , 1500454
hierarchical Ni-Co-P HNBs	1.62	This work

Table S3. Overall water splitting performances of our sample compared with recently reported representative electrocatalysts in alkaline electrolytes.