The Future of Solar Fuels: When could they become competitive?

R. J. Detz^{a,b,*}, J. N. H. Reek^b and B. C. C. van der Zwaan^{a,b,c}

a. Energy research Centre of the Netherlands (ECN) part of TNO, Energy Transition Studies, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
b. University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
c. Johns Hopkins University, School of Advanced International Studies (SAIS), Bologna, Italy

email: remko.detz@tno.nl, r.j.detz@uva.nl

	Optimistic	Base	Conservative		Optimistic	Base	Conservative
AE				CO2-SOE			
CAPEX (2015\$/kWe)	825	1100	1375	(2015\$/kWe)	1613	2150	2688
LR	0.21	0.18	0.15	LR	0.30	0.27	0.24
CAGR (%)	5	4	3	CAGR (%)	38	33	28
DF	1	0.98	0.96	DF	0.99	0.96	0.93
PEM				MP			
CAPEX (2015\$/kWe)	1125	1500	1875	(2015\$/kWth)	450	600	750
LR	0.24	0.21	0.18	LR	0.13	0.10	0.07
CAGR (%)	26	21	16	CAGR (%)	12	7	2
DF	0.99	0.96	0.93	DF	0.99	0.96	0.93
SOE				FT			
CAPEX (2015\$/kWe)	1500	2000	2500	(2015\$/kWth)	450	600	750
LR	0.30	0.27	0.24	LR	0.15	0.10	0.03
CAGR (%)	38	33	28	CAGR (%)	18	13	8
DF	0.99	0.96	0.93	DF	0.99	0.96	0.93
PEC				Solar PV			
CAPEX (2015\$/kWH2)	2250	3000	3750	(2015\$/kWh)	0.057	0.063	0.070
LR	0.23	0.2	0.17	LR	0.25	0.23	0.21
CAGR (%)	40	30	20	CAGR (%)	30	25	20
DF	0.99	0.96	0.93	DF	0.96	0.94	0.92

Table S1: Parameters for projecting learning curves

Figure S1: Projected cost-breakdown curves for REN fuel production in the base case scenario

cost-breakdown (in curves US\$(2015)/kg) until 2050 for the production of REN fuels based on learning curves for the underlying technologies in the base case scenario. Among the four routes presented for REN H_2 production with H_2O as feedstock are three electrolysis options (AE, PEM, and SOE) and one photoelectrochemical approach (PEC). In three routes CO_2 is introduced as additional feedstock for the production of carbon-based REN fuels (syngas, methanol, and diesel). The horizontal dotted break-even lines represent the current costs of producing these fuels on the

CAPEX SOE

0&M

H2O

2035 2040 2045 2050

Time (years)

Electricity

----- Current Fossil Hydrogen

Figure S2: Projected cost-breakdown curves for REN fuel production in the most optimistic scenario

