Supporting Information for

Analyzing the efficiency, stability and cost potential for fullerene-free organic

photovoltaics in one Figure of Merit

Ning Li^{1,*}, Iain McCulloch^{2,3}, Christoph J. Brabec^{1,4,*}

¹ Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich- Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany

²King Abdullah University of Science and Technology, KSC, Thuwal 23955-6900, Saudi Arabia.

³ Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK.

⁴ Bavarian Center for Applied Energy Research (ZAE Bayern), Immerwahrstraße 2, 91058 Erlangen, Germany

*Correspondence should be addressed to N.L. and C.J.B. Email: <u>ning.li@fau.de</u>; <u>christoph.brabec@fau.de</u>; Tel.: +49 (0)9131 - 8527634; Fax: +49 (0)9131 - 8528495.

Keywords: ((Organic photovoltaics; Non-fullerene acceptors; Power conversion efficiency prediction; Stability analysis; Commercialization))

Table S1. Normalized values of number of synthetic steps (NSS), reciprocal yield (RY), number of operation units for the isolation/purification (NUO), number of column chromatographies for the isolation/purification (NCC) and number of hazardous chemicals (NHC) for materials investigated in this work. For this work, all the values are normalized to the maximal values of polymers^{S1} (NSSmax = 22; RYmax = 86.9; NUOmax = 39; NCCmax = 13; NHCmax = 44), SC index = 35*N NSS+25*N RY+15*N NUO+15*N NCC+10*N NHC

	N_NSS	N_RY	N_NUO	N_NCC	N_NHC	SC index / %	Ref.
РЗНТ	0.14	0.02	0.1	0	0.09	7.7	S1
PCE10	0.73	0.58	0.62	0.54	0.7	64.3	S1
PCE11	0.364	0.07	0.333	0.231	0.5	27.9	S2
РСВМ	0.227	0.266	0.154	0.154	0.136	20.6	S3
O-IDTBR	0.5	0.267	0.615	0.461	0.364	43.9	S4

Table S2. Photovoltaic parameters of OSCs taken from literature for estimating the i-FoM values.

	$V_{\rm OC}$ / V	$J_{\rm SC}$ / mA cm ⁻²	FF / %	PCE / %	200 hrs Stability	Ref.
P3HT:PCBM	0.56	7.7	65	2.8	0.92	S5
PCE10:PCBM	0.82	15.7	68	8.87	0.91	S6
PCE11:PCBM	0.73	17.8	70	9.2	0.67	S7
P3HT:IDTBR	0.72	12.5	67	6.05	0.98	S8
PCE10:IDTBR	1.03	18.5	63	12.0	0.95	-
PCE11:IDTBR	1.08	14.65	62	9.5	1.00	S9

Table S3.	Parameters	used for e	estimating	the SC i	ndex of	donor:acco	eptor	blends.	The SC	index	(donor)	and SC	index
(acceptor)) were calcu	lated accc	ording to P	o et al. ^{S1}	The D:	A ratios of	OPV	device	s are tal	cen from	m the lit	erature	

	SC index (D) / %	SC index (A) / %	D:A ratio	SC index (M) / %					
	Blended with PCBM								
РЗНТ	7.7	20.6	$1:1^{S10}$	14.1					
PCE10	64.3	20.6	1:2 ^{S6}	35.2					
PCE11	27.9	20.6	$1:1.2^{S2}$	23.9					
	Blended with O-IDTBR								
РЗНТ	7.7	43.9	1:1 ^{S4}	25.8					
PCE10	64.3	43.9	1:1.5	52.1					
PCE11	27.9	43.9	1:1.4 ⁸⁹	37.2					
	Blended with i-NFA								
РЗНТ	7.7	20.6	1:1	14.1					
PCE10	64.3	20.6	1:2	35.2					
PCE11	27.9	20.6	1:1.2	23.9					

Table S4. Energy levels and bandgaps of the three model polymers used for efficiency prediction using the model described in Figure 2b.

	HOMO / eV	LUMO / eV	Bandgap / eV	Optical / eV	PCE limit / % ⁽¹⁾	PCE limit / % ⁽²⁾
РЗНТ	-5.1	-3.2	1.9	1.92	17.6	19.8
PCE10	-5.24	-3.66	1.58	1.58	17.6	19.8
PCE11	-5.34	-3.69	1.65	1.66	17.6	19.8

(1) Calculated under the assumptions of a bandgap-to- V_{OC} loss = 0.5 V, a constant EQE = 0.8 and a FF = 0.75. (2) Calculated under the assumptions of a bandgap-to- V_{OC} loss = 0.45 V, a constant EQE = 0.8 and a FF = 0.8.

Figure S1. Only the smallest bandgap of donor and acceptor is considered for the J_{SC} calculation under the assumption of rectangular absorption of the AM 1.5G solar spectrum and a constant EQE of 80%.

- S1. R. Po, G. Bianchi, C. Carbonera and A. Pellegrino, *Macromolecules*, 2015, 48, 453-461.
- S2. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, *Nat Commun*, 2014, 5, 5293.
- S3. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem., 1995, 60, 532–538.
- S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C. H. Tan,
 S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo,
 J. R. Durrant and I. McCulloch, *Nat Commun*, 2016, 7, 11585.
- S5. J. Adams, G. D. Spyropoulos, M. Salvador, N. Li, S. Strohm, L. Lucera, S. Langner, F. Machui, H. Zhang, T. Ameri, M. M. Voigt, F. C. Krebs and C. J. Brabec, *Energy Environ. Sci.*, 2015, 8, 169-176.
- S6. Q. Liu, J. Toudert, F. Liu, P. Mantilla-Perez, M. M. Bajo, T. P. Russell and J. Martorell, Advanced Energy Materials, 2017, 7, 1701201.
- S7. N. Li, J. D. Perea, T. Kassar, M. Richter, T. Heumueller, G. J. Matt, Y. Hou, N. S. Guldal,
 H. Chen, S. Chen, S. Langner, M. Berlinghof, T. Unruh and C. J. Brabec, *Nat Commun*, 2017, 8, 14541.
- S8. N. Gasparini, M. Salvador, S. Strohm, T. Heumueller, I. Levchuk, A. Wadsworth, J. H. Bannock, J. C. de Mello, H.-J. Egelhaaf, D. Baran, I. McCulloch and C. J. Brabec, *Advanced Energy Materials*, 2017, 7, 1700770.
- S9. H. Cha, J. Wu, A. Wadsworth, J. Nagitta, S. Limbu, S. Pont, Z. Li, J. Searle, M. F. Wyatt,
 D. Baran, J.-S. Kim, I. McCulloch and J. R. Durrant, *Advanced Materials*, 2017, 29, 1701156.
- S10. N. Li, D. Baran, K. Forberich, F. Machui, T. Ameri, M. Turbiez, M. Carrasco-Orozco, M. Drees, A. Facchetti, F. C. Krebs and C. J. Brabec, *Energ Environ Sci*, 2013, 6, 3407.