## Electronic Supplementary Information for

## Carbon Dioxide in the Cage: Manganese Metal-Organic Frameworks for High Performance CO<sub>2</sub> Electrodes in Li-CO<sub>2</sub> Batteries

Siwu Li, Yu Dong, Junwen Zhou,\* Yuan Liu, Jiaming Wang, Xing Gao, Yuzhen Han,

Pengfei Qi, and Bo Wang\*

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

E-mails: frostfire@sina.com (J.Z); bowang@bit.edu.cn (B.W)



Fig. S1 Discharge-charge voltage curves of CNT electrodes cycled at (a) 50 mA  $g^{-1}$ , (b) 100 mA  $g^{-1}$ , and (c) 200 mA  $g^{-1}$  with a capacity limit of 1000 mA h  $g^{-1}$ .



Fig. S2 Crystal structures of (a)  $Mn(C_2H_2N_3)_2$ , (b)  $Mn(HCOO)_2$ , (c)  $MnCO_3$  and (d) MnO (left) and their corresponding discharge-charge voltage curves at 50 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup> (right).



Fig. S3 Discharge-charge voltage curves of  $Mn_2(dobdc)$  electrodes cycled at (a) 100 mA g<sup>-1</sup> and (b) 200 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>.



Fig. S4 Discharge-charge voltage curves of  $Mn(HCOO)_2$  electrodes cycled at (a) 100 mA g<sup>-1</sup> and (b) 200 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>.



Fig. S5 Discharge-charge voltage curves of  $MnCO_3$  electrodes cycled at (a) 100 mA g<sup>-1</sup> and

(b) 200 mA  $g^{-1}$  with a capacity limit of 1000 mA h  $g^{-1}$ .



Fig. S6  $CO_2$  adsorption isotherms of  $Mn_2(dobdc)$ ,  $Mn(HCOO)_2$ ,  $MnCO_3$  and CNT at (a) 273 K and (b) 283 K. (c)  $N_2$  adsorption isotherms of  $Mn_2(dobdc)$  and CNT at 77 K.



**Fig. S7** PXRD patterns of a fresh, a discharged and a recharged  $Mn(HCOO)_2$  electrode. The cells were operated at 50 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>. The enlarged figure highlights the formation and decomposition of Li<sub>2</sub>CO<sub>3</sub>.



Fig. S8 PXRD patterns of a fresh, a discharged and a recharged  $Ni_2(dobdc)$  electrode. The cells were operated at 50 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>.



Fig. S9 PXRD patterns of a fresh, a discharged and a recharged  $Mn_2(dobdc)$  electrode. The cells were operated at 50 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>.



Fig. S10 PXRD patterns of a fresh, a discharged and a recharged  $Co_2(dobdc)$  electrode. The cells were operated at 50 mA  $g^{-1}$  with a capacity limit of 1000 mA h  $g^{-1}$ .



**Fig. S11** PXRD patterns of a fresh, a discharged and a recharged  $MnCO_3$  electrode. The cells were operated at 50 mA g<sup>-1</sup> with a capacity limit of 1000 mA h g<sup>-1</sup>.



**Fig. S12** (a) Typical discharge-charge voltage curves with plots showing the capacity at which an EIS experiment was conducted. (b) Equivalent circuit model for fitting the Nyquist plots. Nyquist plots of (c) CNT, (d)  $Mn_2(dobdc)$ , (e)  $Mn(HCOO)_2$ , and (f)  $MnCO_3$  electrodes at different discharge and charge states (F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h g<sup>-1</sup>, respectively; C1-C3: recharged to 200, 500 and 1000 mA h g<sup>-1</sup>, respectively).



**Fig. S13** (a) Discharge-charge voltage curves of a CNT electrode. (b-f) SEM images of CNT electrodes at different states during operation at 50 mA  $g^{-1}$  (F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h  $g^{-1}$ , respectively; R: recharged to 1000 mA h  $g^{-1}$ ).



Fig. S14 (a) Discharge-charge voltage curves of a  $Mn_2(dobdc)$  electrode. (b-f) SEM images of  $Mn_2(dobdc)$  electrodes at different states during operation at 50 mA g<sup>-1</sup> (F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h g<sup>-1</sup>, respectively; R: recharged to 1000 mA h g<sup>-1</sup>).



Fig. S15 (a) Discharge-charge voltage curves of a  $Mn(HCOO)_2$  electrode. (b-f) SEM images of  $Mn(HCOO)_2$  electrodes at different states during operation at 50 mA g<sup>-1</sup> (F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h g<sup>-1</sup>, respectively; R: recharged to 1000 mA h g<sup>-1</sup>).



**Fig. S16** (a) Discharge-charge voltage curves of a MnCO<sub>3</sub> electrode. (b-f) SEM images of MnCO<sub>3</sub> electrodes at different states during operation at 50 mA  $g^{-1}$  (F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h  $g^{-1}$ , respectively; R: recharged to 1000 mA h  $g^{-1}$ ).



Fig. S17 (a) PXRD patterns, (b) and (c) SEM images of  $Mn_2(dobdc)@Ni$  foam.



Fig. S18 Schematics of the DEMS system.



Fig. S19 Discharge-charge voltage curves of a  $Mn_2(dobdc)$  electrode tested in Ar atmosphere at 50 mA g<sup>-1</sup>.



Fig. S20 Photographs of a customized Swagelok cell for *in situ* DEMS.

| CO <sub>2</sub> electrode            | Full discharge capacity<br>(mA h g <sup>-1</sup> ) <sup>[a]</sup> | Average charge potential (V) <sup>[b]</sup>                | Cycle life                                    | Ref.       |  |
|--------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|------------|--|
| Mn <sub>2</sub> (dobdc)              | 18022 (50 mA g <sup>-1</sup> )                                    | nA $g^{-1}$ ) 3.96 (50 mA $g^{-1}$ ) 50 (200 mA $g^{-1}$ ) |                                               |            |  |
| Mn(HCOO) <sub>2</sub>                | 15510 (50 mA g <sup>-1</sup> )                                    | 4.00 (100 mA g <sup>-1</sup> )                             | 50 (200 mA g <sup>-1</sup> )                  | I IIS WORK |  |
| Ketjen-black                         | <100 (0.1 mA cm <sup>-2</sup> )                                   | N/A                                                        | N/A                                           | 1          |  |
|                                      | 1808 (30 mA g <sup>-1</sup> )                                     | 4.26 (30 mA g <sup>-1</sup> )                              | 9 (30 mA g <sup>-1</sup> )                    | 2          |  |
| High surface area carbon             | ~800 (0.05 mA cm <sup>-2</sup> )                                  | N/A                                                        | N/A                                           | 3          |  |
|                                      | ~3000 (0.05 mA cm <sup>-2</sup> ) <sup>[c]</sup>                  | N/A                                                        | N/A                                           |            |  |
| CNTs                                 | 8379 (50 mA g <sup>-1</sup> )                                     | 4.3 (50 mA $g^{-1}$ )                                      | 29 (50 mA $g^{-1}$ )                          | 4          |  |
| Graphene                             | 14774 (50 mA g <sup>-1</sup> )                                    | 4.07 (50 mA g <sup>-1</sup> )                              | $0 \text{ mA } g^{-1}$ ) 20 (50 mA $g^{-1}$ ) |            |  |
| B,N-codoped holey graphene           | 16033 (300 mA g <sup>-1</sup> )                                   | 3.97 (100 mA g <sup>-1</sup> )                             | $mA g^{-1}$ ) 200 (1000 mA $g^{-1}$ )         |            |  |
| Ru@Super P                           | 8229 (100 mA g <sup>-1</sup> )                                    | $3.93 (100 \text{ mA g}^{-1})$                             | 70 (100 mA $g^{-1}$ )                         | 7          |  |
| Mo <sub>2</sub> C@CNT <sup>[d]</sup> | $\sim 360 (\sim 5 \text{ mA g}^{-1})$                             | $\sim 3.5 (\sim 5 \text{ mA g}^{-1})$                      | 40 (~5 mA g <sup>-1</sup> )                   | 8          |  |
| Ni-NG                                | 17625 (100 mA $g^{-1}$ )                                          | 4.2 (100 mA $g^{-1}$ )                                     | 101 (100 mA g <sup>-1</sup> )                 | 9          |  |

Table S1. Summary of performance of existing CO<sub>2</sub> electrodes working in pure CO<sub>2</sub>.

[a] Full discharge capacity is the discharge capacity toward a cutoff potential of 2.0 V under the given current density. All the capacity and current density values, unless specified otherwise, are normalized by the total mass of catalyst and conductive agent.

[b] Average charge potential is the average of potential during a charge process with a capacity limit of 1000 mA h  $g^{-1}$ .

[c] This value was obtained at 100 °C.

[d] The capacity and current density values of  $Mo_2C@CNT$  are calculated based on the loading mass of 4 mg on the electrode. The capacity limit for deriving the average charge potential is ~30 mA h g<sup>-1</sup>.

| $CO_2$ electrode –      |     |     |      | $R_{\rm ct}\left(\Omega\right)$ |      |     |     |
|-------------------------|-----|-----|------|---------------------------------|------|-----|-----|
|                         | F   | D1  | D2   | D3                              | C1   | C2  | C3  |
| CNT                     | 276 | 295 | 1474 | 3397                            | 1667 | 683 | 623 |
| Mn <sub>2</sub> (dobdc) | 279 | 291 | 712  | 1115                            | 650  | 458 | 434 |
| Mn(HCOO) <sub>2</sub>   | 281 | 383 | 672  | 1326                            | 881  | 535 | 507 |
| MnCO <sub>3</sub>       | 308 | 329 | 745  | 1241                            | 1072 | 542 | 414 |

**Table S2.** Charge transfer resistance ( $R_{ct}$ ) of different CO<sub>2</sub> electrodes at different discharge and charge states (Fitting results of **Fig. S12**).

F: fresh electrode; D1-D3: discharged to 200, 500 and 1000 mA h  $g^{-1}$ , respectively; C1-C3: recharged to 200, 500 and 1000 mA h  $g^{-1}$ , respectively.

## References

- (1) Takechi, K.; Shiga, T.; Asaoka, T. Chem. Commun. 2011, 47 (12), 3463.
- (2) Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Energy Environ. Sci. 2014, 7 (2), 677.
- (3) Xu, S. M.; Das, S. K.; Archer, L. A. RSC Adv. 2013, 3 (18), 6656.
- (4) Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z. Chem. Commun.
  2015, 51 (78), 14636.
- (5) Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z. Angew. Chem. Int. Ed. 2015, 54 (22), 6550.
- (6) Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L. Angew. Chem. Int. Ed. 2017, 56, 1.
- (7) Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H. *Energy Environ. Sci.*2017, 10 (4), 972.
- (8) Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J. Adv. Funct. Mater. 2017, 1700564.
- (9) Zhang, Z.; Wang, X.-G.; Zhang, X.; Xie, Z.; Chen, Y.-N.; Ma, L.; Peng, Z.; Zhou, Z. *Adv. Sci.* **2017**, 1700567.