Electronic Supplementary Information

SiO₂-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers

and their enhanced oxygen reduction reaction performance

Bi-Cheng Hu[‡], Zhen-Yu Wu[‡], Sheng-Qi Chu, Hong-Wu Zhu, Hai-Wei Liang*, Jing Zhang, and Shu-Hong Yu*

Fig. S1. TEM images of (a) CNF@PPy and (b) CNF@PPy@SiO2. The layer of SiO2 coating on

CNFs can be clearly observed from the TEM image in (b).

Fig. S2. TGA curves of CNF@PPy@SiO₂ in air.

Fig. S3. LSV curves of p-Fe-N-CNFs catalysts prepared under a) different pyrolysis temperatures,b) different FeCl₃ adding amounts.

Fig. S4. HRTEM images of p-Fe-N-CNFs. The inset is an enlarged HRTEM image.

Fig. S5. Elemental mapping of the up-Fe-N-CNFs catalyst.

Fig. S6. XRD pattern of p-Fe-N-CNFs and up-Fe-N-CNFs.

Fig. S7. High-resolution N 1s spectra of up-Fe-N-CNFs.

Fig. S8. LSV curves of up-N-CNFs and p-N-CNFs.

Fig. S9. LSV curves with various rotation rates (a) and corresponding K-L plots (j⁻¹ vs. $\omega^{-1/2}$) (b) at different potentials of up-Fe-N-CNFs.

Fig. S10. Electron transfer number (n) of p-Fe-N-CNFs, up-Fe-N-CNFs and Pt/C catalysts under various potentials.

Fig. S11. Tafel plots of p-Fe-N-CNFs, up-Fe-N-CNFs, and Pt/C catalysts.

Fig. S12. LSV curves of p-Fe-N-CNFs, up-Fe-N-CNFs, and 20% Pt/C in 0.1 M KOH solution.

Fig. S13. The CV result of RHE calibration in 0.1 M $HClO_4$ solution, Potential (V vs. RHE) = Potential (V vs. Ag/AgCl) + 0.261 V.

samples	N (at%)	Fe (at%)
p-Fe-N-CNFs-800	8.80	0.22
p-Fe-N-CNFs-900	6.23	0.31
p-Fe-N-CNFs-1000	3.03	0.12

Table S1. The nitrogen and iron content of p-Fe-N-CNFs prepared at different temperature (800-1000 °C) obtained by XPS.

Table S2. Pore features of p-Fe-N-CNFs and up-Fe-N-CNFs, respectively.

Catalyst	S_{BET}^{*}	$\mathrm{S}_{\mathrm{micro}}^{\dagger}$	S _{micro} /S _{meso} ‡	$\mathbf{V}_t^{\$}$	V_{micro}^{\parallel}	$V_{micro} / V_{meso} \P$
	$(m^2 g^{-1})$	$(m^2 g^{-1})$		$(m^3 g^{-1})$	$(m^3 g^{-1})$	
p-Fe-N-CNFs	941.015	664.102	2.40	0.7829	0.3519	0.82
up-Fe-N-	652.976	217.458	0.50	0.7005	0.2257	0.47
CNFs						

 ${}^{*}S_{BET}$ is the Brunauer-Emmett-Teller (BET) specific surface area.

 $^{\dagger}S_{\text{micro}}$ is the t-plot-specific micropore surface area calculated from the N_2 adsorption-desorption isotherm.

 $^{\ddagger}S_{meso}$ is the specific mesopore surface area estimated by subtracting S_{micro} from S_{BET} .

 V_t is the total specific pore volume determined by using the adsorption branch of the N₂ isotherm at P/P₀=0.99.

 V_{meso} is the specific mesopore volume obtained from the Barrett-Joyner-Halenda (BJH) cumulative specific adsorption volume of pores of 3.00-300.00 nm in diameter.

 V_{micro} is the specific micropore volume calculated by subtracting V_{meso} from V_t .

Catalyst	Onset	Half-wave	Current			
	potential	potential density	Electrolvte	References		
	(V vs. RHE)	(V vs.	at 0.3 V (mA cm ⁻²)			
	(*******)	RHE)				
Fe-N/C-800	0.77	~0.6	4 88	0.1 M	I Am Chem Soc 2015 137 5555	
10 10 000	0.77	.0.0	H.00	HClO ₄	5.74m. Chem. 500. 2015,157, 5555	
CPANI-Fe- NaCl	/	~0.727	~5	0.1 M	I Am Cham Soc 2015 127 5414	
				HClO ₄	J. Am. Chem. Soc. 2015, 157, 5414	
	0.04	0.82		0.1 M		
PmPDA-FeNx/C	(000	(900	/	U.CO	J. Am. Chem. Soc. 2014, 136, 10882	
	(900 Ipili)	rpm)		$\Pi_2 SO_4$		
DME 900	1	0.(2	(0.1 M	I Am Cham See 2015 127 142(
РМГ-800	/	~0.02	~0	HClO ₄	J. Am. Chem. Soc. 2015, 157, 1450	
FePhen@MOF-	0.02	0.77	5.0	0.1 M		
ArNH ₃	0.93	0.//	~5.9	HClO ₄	Nat. Commun. 2015, 6, 7343	
PANI-Fe/SiO ₂				0.5 M		
colloid	0.84	0.73	~4.6	H_2SO_4	J. Am. Chem. Soc. 2013, 135, 16002	
		0.836				
Fe/N/C-SCN	/	(900	/	0.1 M	Angew. Chem. Int. Ed. 2015, 54	
		rpm)		H_2SO_4	,9907	
	0.9	0.73	~4.2	0.1 M	Angew. Chem. Int. Ed. 2015, 53,	
Fe ₃ C/C-700				HClO ₄	3675	
		~0.41	~5.78	0.5 M		
Fe-CNT-PA	/			H_2SO_4	Energy Environ. Sci., 2015, 8, 1799	
				0.1 M		
Fe ₃ C/NG-800	0.92	0.77	~5.8	HClO₄	Adv. Mater. 2015, 27, 2521	
				0.1 M	J. Am. Chem. Soc., 2017, 139.	
(Fe,Co)/N-C	1.06	0.863	~5.5	HClO₄	17281-17284	
		0.85				
Fe-ZIF	/	(900	/	0.5 M	J. Am. Chem. Soc., 2017, 139,	
	,	(500	,	H_2SO_4	14143-14149	
Fe/SNC		0.77	4.8	0.5 M	Angew Chem Int Ed 2017	
	/			H ₂ SO ₄	56 13800-13804	
FeTMPPCl	0.824	0.748	~6	0.1 M	20,12000 12004	
				HCIO	Adv. Funct. Mater. 2017, 1604356	
up-Fe-N-CNFs	0.81	0.68	5.0	0 1 M		
				HCIO	This work	
				A 1 M		
p-Fe-N-CNFs	0.85	0.74	5.5		This work	
				HCIO ₄		

 Table S3. Comparison of ORR performance in acidic electrolyte of p-Fe-N-CNFs at 1600 rpm

with literature values.

Catalyst	Onset potential	Half-wave	Current	References
	(V vs. RHE)	potential	density	
		(V vs. RHE)	at 0.4 V	
			(mA cm ⁻²)	
Fe-N/C-800	0.98	~0.81	4.81	J. Am. Chem. Soc. 2015, 137, 5555
Fe ₃ C/C-800	1.05	0.83	/	Angew. Chem. Int. Ed. 2014, 53, 3675
Fe-N/C	0.923	0.809	~6.0	J. Am. Chem. Soc. 2014, 136, 11027
FePhen@MOF- ArNH ₃	1.03	0.86	~5.1	Nat. Commun. 2015, 6, 7343
Fe-tpy-GO	<-0.10	<-0.40	-3.5	Angew. Chem. Int. Ed. 2014,
	(vs. Ag/AgCl)	(vs. Ag/AgCl)		53, 1415
PMF-800	/	~0.86	~5.7	J. Am. Chem. Soc. 2015, 137,
				1436
Fe ₃ C/NG-800	1.03	0.86	~5.7	Adv. Mater. 2015, 27, 2521
Fe@C-FeNC-2	/	0.899	~5.3	J. Am. Chem. Soc. 2016, 138,
				3570
Fe ₃ O ₄ /N-GAs	-0.19	<-0.40	-3.3	J. Am. Chem. Soc. 2012, 134,
	(vs. Ag/AgCl)	(vs. Ag/AgCl)		9082
Fe-NMCSs	1.027	0.86	~5.2	Adv. Mater. 2016, 28, 7948
FP-Fe-TA-N-850	0.98	/	5.0 (0.6 V)	Angew. Chem. Int. Ed. 2015,
				55, 1355
Fe-N-CNFs	0.93	0.81	5.12	Angew. Chem. Int. Ed. 2015, 54
				,8179
NC@Co-NGC	0.92	0.82	5.3	Adv. Mater. 2017, 1700874
DSNCs				
pCNT@Fe@GL/CN	/	0.811	5.7	Adv. Mater. 2017, 1606534
F				
p-Fe-N-CNFs	0.94	0.82	5.05	This work

Table S4. Comparison of ORR performance of p-Fe-N-CNFs at 1600 rpm in 0.1 M KOH with

literature values.