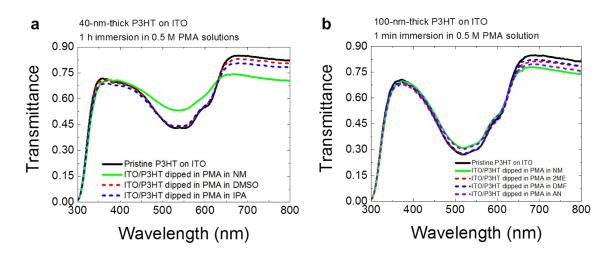
## Supplementary Information

## Stable solvent for solution-based electrical doping of semiconducting polymer films and its application to organic solar cells

Felipe A. Larrain<sup>1</sup>, Canek Fuentes-Hernandez<sup>1</sup>, Wen-Fang Chou<sup>1</sup>, Victor A. Rodriguez-Toro<sup>1</sup>, Tzu-Yen Huang<sup>2</sup>, Michael F. Toney<sup>2</sup> and Bernard Kippelen<sup>1\*</sup>


<sup>1</sup>Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

<sup>2</sup>Stanford Synchrotron Radiation Laboratory (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

\*Correspondence to: kippelen@gatech.edu

|                    | Hansen Space<br>(as in HsPiP 5.0.04) |      |      |                   | NFPA 704 |              |             |
|--------------------|--------------------------------------|------|------|-------------------|----------|--------------|-------------|
| Solvent            | δD                                   | δΡ   | δH   | Distance<br>to NM | Health   | Flammability | Instability |
| Nitromethane (NM)  | 15.8                                 | 18.8 | 6.1  | -                 | 2        | 3            | 4           |
| Acetonitrile       | 15.3                                 | 18   | 6.1  | 1.28              | 2        | 3            | 0           |
| Dimethyl sulfoxide | 18.4                                 | 16.4 | 10.2 | 7.04              | 2        | 2            | 0           |
| Dimethylformamide  | 17.4                                 | 13.7 | 11.3 | 7.96              | 2        | 2            | 0           |
| 2-methoxyethanol   | 16                                   | 8.2  | 15   | 13.85             | 3        | 2            | 2           |
| 2-propanol         | 15.8                                 | 6.1  | 16.4 | 16.35             | 1        | 2            | 1           |
| Ethanol            | 15.8                                 | 8.8  | 19.4 | 16.64             | 2        | 3            | 0           |

## Table S1. Solvents used to dissolve PMA and their properties.



**Figure S1**. **Transmittance spectra of pristine P3HT and PMA-im-P3HT, when using various solvents to dissolve PMA. a,** Transmittance spectra of 40-nm-thick P3HT on ITO, pristine or immersed in several 0.5 M PMA solutions for 1 h. In the legend, 'NM' stands for nitromethane, 'DMSO' is dimethyl sulfoxide and 'IPA' is isopropyl alcohol. b, Transmittance spectra of 100-nm-thick P3HT on ITO, pristine or immersed in several 0.5 M PMA solutions for 1 min. In the legend, '2ME' stands for 2-methoxyethanol, 'DMF' is dimethylformamide and 'AN' is acetonitrile. All measurements were conducted in air, although the immersion step was conducted inside a N<sub>2</sub>-filled glovebox.

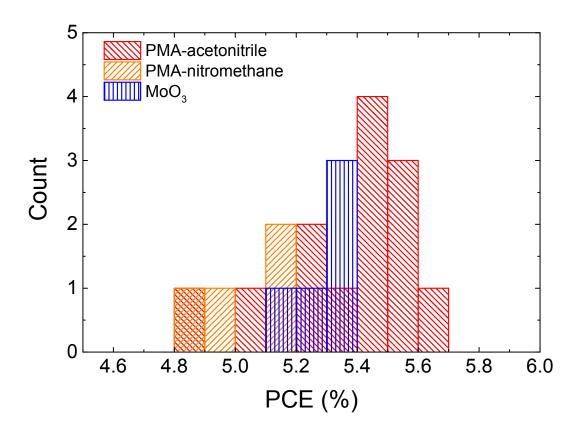



Figure S2. Histogram of PCEs measured under AM 1.5G solar simulation, including populations of organic solar cells doped with PMA-acetonitrile, PMA-nitromethane or with an evaporated MoO<sub>3</sub> hole-collecting layer. All measurements were conducted in inert atmosphere and before exposing these devices to air.

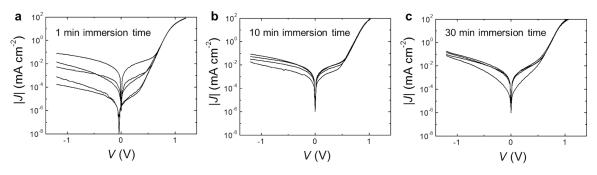
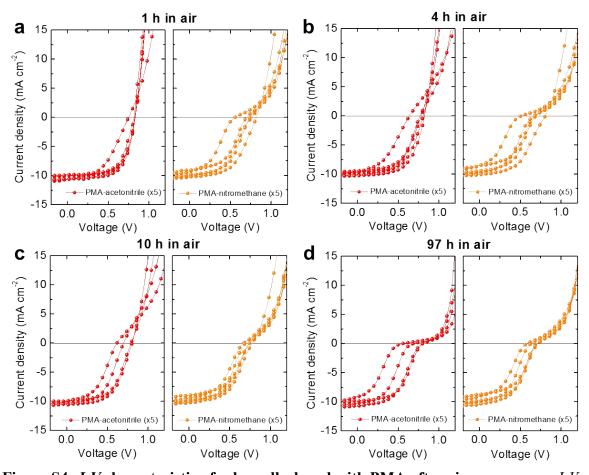




Figure S3. *J-V* characteristic of solar cells in the dark, doped for various times. a, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min. b, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 10 min. c, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 30 min. All measurements were conducted after 10 min soaking under 1-sun illumination in a N<sub>2</sub>-filled glovebox.



**Figure S4**. *J-V* characteristic of solar cells doped with PMA after air exposure. a, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min or PMA in nitromethane for 1 min, after 1 h exposure to air. b, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min or PMA in nitromethane for 1 min, after 4 h exposure to air. c, *J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min or PMA in nitromethane for 1 min, after 4 h exposure to air. *c, J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min or PMA in nitromethane for 1 min, after 10 h exposure to air. *d, J-V* characteristic of 200 nm-thick PMA-im-P3HT:ICBA OPVs, doped using PMA in acetonitrile for 1 min or PMA in nitromethane for 1 min, after 97 h exposure to air. All measurements were conducted after 10 min soaking under 1-sun illumination in a N<sub>2</sub>-filled glovebox.

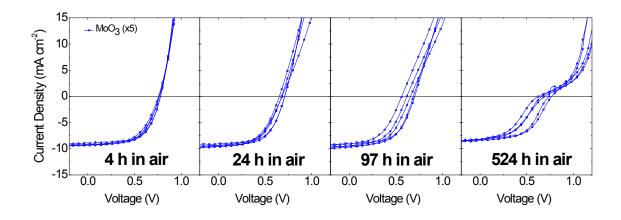



Figure S5. *J-V* characteristic of reference solar cells after air exposure. a, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 4 h exposure to air. b, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 24 h exposure to air. c, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 97 h exposure to air. d, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 97 h exposure to air. d, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 97 h exposure to air. d, *J-V* characteristic of 200 nm-thick P3HT:ICBA OPVs, with a 10 nm MoO<sub>3</sub> layer for hole collection, after 524 h exposure to air. All measurements were conducted after 10 min soaking under 1-sun illumination in a N<sub>2</sub>-filled glovebox.