Supporting information

Concentrated Mixed Cation Acetate "Water-in-Salt" Solutions as Green and Low Cost High Voltage Electrolytes for Aqueous Batteries

Maria R. Lukatskaya¹, Jeremy I. Feldblyum^{1,2}, David G. Mackanic¹, Franziska Lissel³, Dominik L. Michels⁴, Yi Cui⁵, Zhenan Bao^{1,*}

Contents

- 1. Supplementary figures S1-S7 and table S1
- 2. Supplementary text
- 3. Supplementary references

1. Supplementary figures

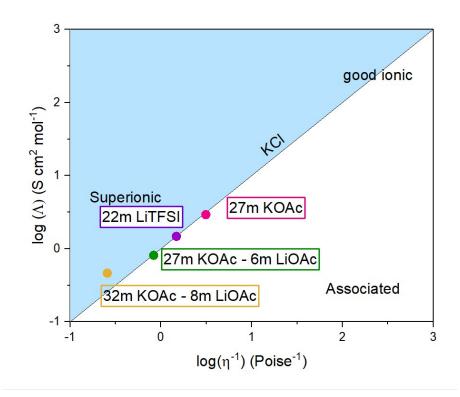
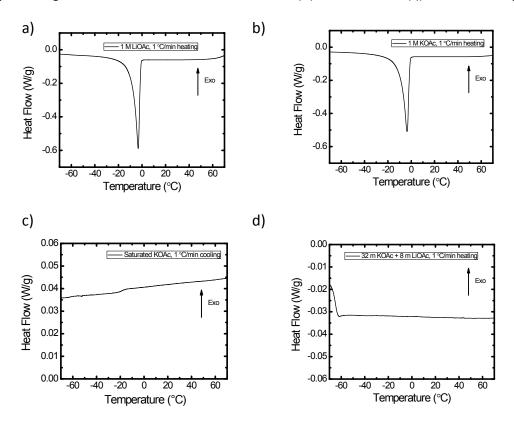
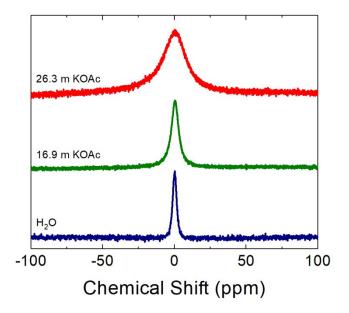
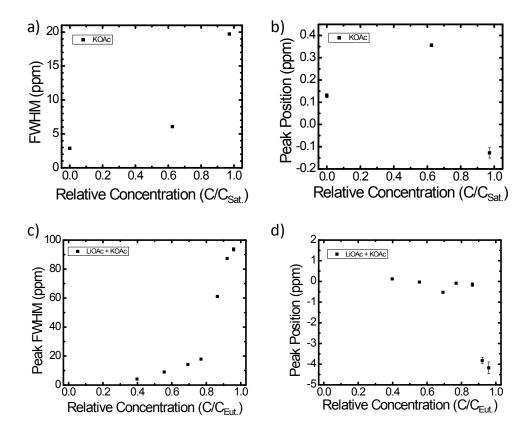
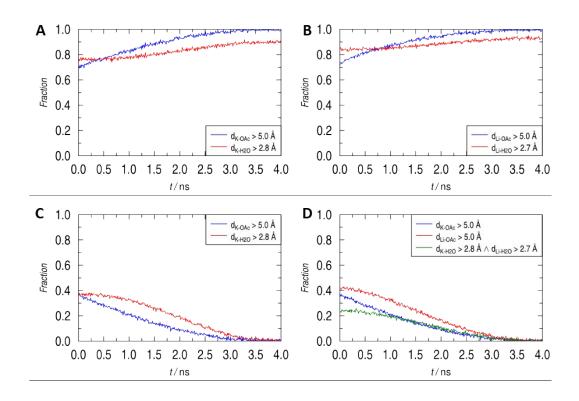
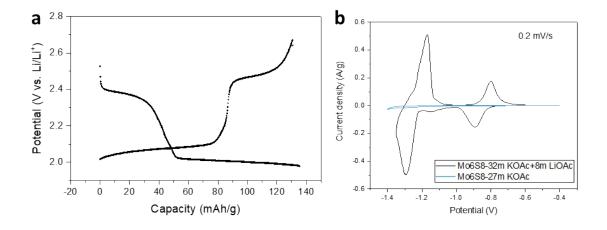



Figure S1. Walden plot for 27 m KOAc (pink closed circle), 27 m KOAc – 6 m LiOAc (green closed circles), 32 m KOAc – 8 m LiOAc (yellow closed circles) and 22 m LiTFSI (violet closed circle) at various concentrations at 25 °C. The Walden plot was generated from the molar conductivities (Λ) and viscosities (η) of the electrolyte solutions.

Figure S2. Differential scanning thermograms of a) 1 m LiOAc, b) 1 m KOAc, c) saturated aqueous KOAc, and d) the WIS solution of 32 m KOAc – 8 m LiOAc.


Figure S3. ¹⁷O NMR spectra of KOAc solutions. Data are vertically offset and normalized to ease visualization.

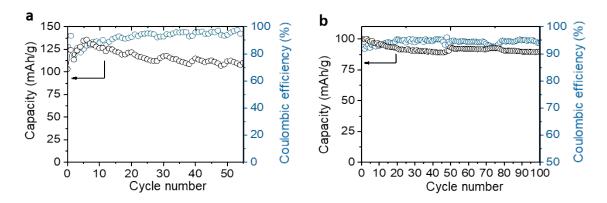

Figure S4. (a, b) Trends in 17 O NMR data of LiOAc solutions. Concentration is shown relative to saturation (27 m). (c, d) Trends in 17 O NMR data of LiOAc – KOAc solutions. Concentration is shown relative to the eutectic concentration, 32 m KOAc – 8 m LiOAc.

Figure S5: Illustration of the composition of the simulated electrolytes as a function of time. From top left to bottom right: (A) 1 m KOAc, (B) 1 m LiOAc, (C) 27 m KOAc, (D) 32 m KOAc–8 m LiOAc.

Figure S6. **a**, Galvanostatic charge/discharge profile collected at 0.2 A/g charging rate for Mo_6S_8 electrode in 32 m KOAc – 8 m LiOAc solution. **b**, Cyclic voltammetry profiles collected at scan rate of 0.2 mV/s for Mo_6S_8 electrodes in 27 m KOAc (blue line) and 32 m KOAc – 8 m LiOAc (black line) solutions.

Figure S7. Capacity retention data and coulombic efficiency for a, c-TiO₂ and b, LiMn₂O₄ collected at 0.5 C charging rate.

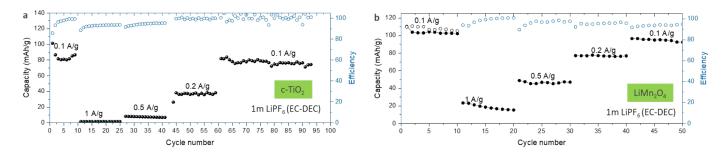
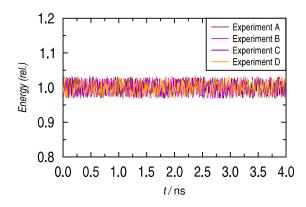



Figure S8. Cycling stability and rate performance data for a, c-TiO₂ anode and b, LiMn₂O₄ cathode in 1 m LiPF₆ (EC-DEC).

Figure S9: Illustration of the temporal evolution of the relative energy during the simulation for the systems (A)-(D).

Table S1. Composition of the electrolyte systems analyzed using MD.

Table 31 Composition of the electrolyte systems analyzed asing 1415.				
System	Α	В	С	D
Molarity	1 m KOAc	1 m LiOAc	27 KOAc	32 KOAc + 8 LiOAc
Ratio				
Water/KOAc	55.5	-	2.1	1.7
Water/LiOAc	-	55.5	-	6.9
Number of Water molecules	333	333	231	187
Number of KOAc molecules	6	-	110	110
Number of LiOAc molecules	-	6	-	27

2. Supplementary text

MD simulation results of the acetate water-in-salt system

Experimental data as well as theoretical examinations consistently give the radius of the primary hydration shell of a K^+ ion in an aqueous 6-ligand environment as $Hyd_K = 2.8 \text{ Å}$, and the hydration shell of Li^+ as $Hyd_{Li} = 2.7 \text{ Å}$. State has to be noted that for Li^+ ion, the radius of the hydration shell is reported with more ambiguity, reflecting the transition from 4 to 6 coordinate Li^+ as well as the non-negligible impact of the second hydration shell on the solvation. Free water, defined as being outside of the hydration shells, can adsorb on the electrode surface. For mono-salt electrolytes, fractions of free water of 0.15 were reported, State while for bi-salt systems mixing two lithium salts, fractions of free water as low as 0.11 were reached.

After the simulations of electrolytes A (1 m KOAc) and B (1 m LiOAc) reach a structurally stable state at 3 ns, the respective ions in the systems are fully separated by more than 5 Å (see **Figure S5 A and B**, blue), with no interpenetration of the hydration shells. As expected for the low salt concentrations, the bulk of the water molecules is present outside of the respective cationic hydration shells (Hyd_K = 2.8 Å and Hyd_{Li} = 2.7 Å), and the fraction of free water is around 0.9 for system A and 0.95 for system B. The difference reflects the higher average

coordination number of the K⁺ ion. The results of the simulations are in accordance with the expected behavior of the electrolytes A and B, which both represent classic salt-in-water systems.

In the simulation of system C, a potassium based electrolyte with a concentration of 27 m KOAc, the hydration shells show a high degree of interpenetration with all water molecules present in at least one hydration shell at any given time. The fraction free water ($d_{K-H2O} > 2.8 \text{ Å}$) as well as the fraction of separated ion pairs ($d_{K-OAc} > 5 \text{ Å}$) approaching 0 after 3 ns (see **Figure S5 C**), The fraction of free water is lower than the reported lithium based mono-salt electrolyte, which is consistent with the higher concentration (27 m KOAc as compared to 22 m LiTFSI) and the higher average coordination number of potassium.

For the highly concentrated mixed-cationic electrolyte D with 32 m KOAc - 8 m LiOAc, the fraction of free water, defined as being outside of a cationic hydration shell with radii Hyd_K = 2.8 Å and Hyd_{Li} = 2.7 Å is approaching 0 (see **Figure S5 D**, green) in the stable system reached after a simulation time of 3 ns. Also, the concentration yields a system with a markedly high degree of interpenetration of the hydration shells where the fraction of ions isolated by water is approximating 0 (see **Figure S5 D**, blue and red). Based on the MD simulations, the system can consequently be described as a near-ideal example of a water-in-salt electrolyte.

3. Supplementary references

- S1. J. Mähler, I. Persson, Inorganic Chemistry, 2012, 51 (1), 425-438A
- S2. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang and K. Xu, Science, 2015, 350, 938
- S3. L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu and C. Wang, *Angewandte Chemie International Edition*, 2016, **55**, 7136-7141.