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1. Effective transport properties of the Cel-
gard® PP1615 separator 

The Celgard® PP1615 separator was analysed as de-
scribed in our previous work1. This separator has 
relatively large pore channels leading to a large rep-
resentative volume element (RVE) with an edge 
length of ~3 µm (see Figure S1a). For the Targray 
PE16A separator dataset2, the RVE edge length is ~2 
µm as determined in our previous work1. For the PP 
RVE edge length of 3 µm, we determine a porosity 
ε of 40.19±1.03 % (Figure S1b), tortuosities τTP = 
2.04±0.19, τIP1 = 2.31±0.24, and τIP2 = 24.89±6.15 
(Figure S1c). This is also reflected in the effective 
transport coefficients δTP = 19.9±2.0 %, δIP1 17.6±2.1 
%, and δIP2 = 1.7±0.4 % (Figure S1d); effective 
transport in the IP2 direction is thus approximately 
ten times worse than in the TP or IP1 directions.  
The pore networks of both the Targray PE16A and 
the Celgard® PP1615 separators consist of a single 
interconnected pore network. Small areas of non-
connected pore space that might be present in 
these separators do not contribute to ionic 
transport across the separator and should be omit-
ted for performance evaluations. Our imaging pro-
cess relies on infilling the connected pore structure 
of the separator with material of a high imaging 
contrast1. This infilling process omits the non-con-
nected pore space yielding a single interconnected 
pore network. 
 

 
 
Figure S1. (a) Scale space analysis of the Celgard® PP1615 da-
taset3 showing the convergence of the porosity distributions at 
different sub-volume sizes towards the mean value. (b) Porosity 
ε, (c) tortuosity τ, and (d) effective transport coefficient δ histo-
grams for TP, IP1, and IP2 directions of the 3 µm edge length sub-
volumes. 

 
2. Extensive and intensive Minkowski func-

tionals 
The pore space of a binary structure is defined as P, 
which has an embedding space Ω (P ⊂	Ω, with Ω 
occupying the total dataset volume, VΩ). The pore 
space’s boundary is δP, and its surface element for 
cylindrically-shaped structures is ds = R dz dφ. The 
extensive Minkowski functionals, Mx(P) (with x ∈ 
{0, …, d} and d being the dimensionality of the struc-
ture of interest, here: d = 3), can also be expressed 
as intensive parameters (i.e., normalised function-
als), mx(P).4  

𝑚"(P) =
𝑀"(P ∩ Ω)

V+
 

 
The first Minkowski functional, M0(P), corresponds 
to the pore volume, VPore: 

M-(P) = V./01(P). 
The first normalised Minkowski functional, m0(P), 
corresponds to a structure’s porosity, ε. For N non-
intersecting cylindrical pores of height h and radius 
R (see Figure 2a in the main text), M0(P) becomes N 
• π R2 • h. 
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The second Minkowski functional, M1(P), measures 
the interfacial area between pores and solid phase. 
The corresponding normalised functional is the spe-
cific surface area, m1(P). 

M3(P) = 4 ds
	

8.
 

For N non-intersecting cylindrical pores of height h 
and radius R (Figure 2a), the integral yields N • 2 π 
R • (R + h). 
 
The third Minkowski functional, M2(P), measures 
the mean curvature, H(P), over the interface and is 
a one-dimensional shape factor for 3D shapes. The 
corresponding normalised functional is called mean 
breadth density, m2(P). 

M9(P) =
1
2π
4 H(P)	ds
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For N non-intersecting cylindrical pores of height h 
and radius R (Figures 2a and 3a) the integral yields 
N/2 • (h + π • R). Thus, for long, small pores, M2(P) 
becomes N•h/2. For complex structures with 
interconnectivity in several directions (Figures 3b-
c), M2(P) becomes more complex, and can be 
calculated numerically, but no longer analytically. 
 
The fourth Minkowski functional, M3(P), measures 
the Gaussian curvature, K(P), over the interface 
(thus, the total curvature), and is proportional to 
the Euler-Poincaré characteristic, Χ(P), a topological 
invariant.  

MH(P) = 4 K(P)	ds
	

8.
= 4 ?

1
rABC ∙ rAEF

G ds
	

8.
=

= 4π ∙ 𝛸 
In 3D, the characteristic Χ is linked to the Betti num-
bers β0 (number of objects N), β1 (connectivity C) 
and β2 (number of enclosed cavities), and, for a 
voxel-based dataset, to NV (number of vertices), NE 
(number of edges), NF (number of faces), and Nvox 
(number of voxels, or solids).4,5 

𝛸 = 𝛽- − 𝛽3 + 𝛽9 = 	𝑁O − 𝑁P +𝑁Q − 𝑁RS" 
For percolating networks of pores and solid (i.e., 
without enclosed cavities), the characteristic Χ of 
the pore space can simply be expressed by the num-
ber of pores, N (N ≧ 0), and the connectivity, C (C 
≧ 0).   

𝛸 = 𝑁 − 𝐶 

The corresponding normalised parameters, χ and c, 
are the Euler-Poincaré characteristic density and 
the connectivity density. 
 

3. Minkowski functionals of separator mi-
crostructures 

Minkowski functionals have previously been linked 
to transport related parameters.  The shape factor, 
in combination with the surface area, provides a 
first approximation of the diffusion coefficient6. 
Structures with high connectivity have large node 
and branch densities, and higher order nodes are 
associated with more spreading power.7 Mean-
while, in diffusion simulations, branches that dead-
end do not contribute to effective transport 
through the structure.8  
The intensive Minkowski functionals (i.e., normal-
ised to the analysed volume and designated here 
with mx) are listed in Table T1. As designed, the ref-
erence separator microstructures replicate porosi-
ties well within the specified porosity of 40±2 and 
40±5 % of the PE and PP separators. The specific 
surface area of the reference datasets slightly de-
creases as more pores are added in a second and 
third perpendicular direction. The specific surface 
area (m1) of the PE separator (11.72 µm-1) is almost 
identical to m1 of artificially generated microstruc-
tures with pores in three perpendicular directions 
(11.62 µm-1). This is expected since pore size as well 
as porosity were chosen to match the parameters 
of the PE separator. It shows that cylindrical pore 
segments are a good approximation for the pore 
shape in the PE separator. For the PP separator, the 
value for m1 is lower (5.22 µm-1) due to the larger 
pores in PP. 
 
m2 can be interpreted as a measure of shape of the 
surface. For the all structures (reference and real), 
the values are positive, indicating that the shape of 
the pore surface is on average convex.9,10 For the 
reference datasets with cylindrical pores in one di-
rection, the shape factor scales with the number of 
pores N and with h+π･R, where h is the pore length 
and R is the pore radius. As more pores are intro-
duced in a second and third perpendicular direc-
tion,  

Table T1. Average values and standard deviations of the intensive Minkowski functionals m0, m1, m2, as well as Euler-Poincaré characteristics 
and connectivity densities χ and c, respectively, for the artificially generated microstructures (1D, 2D and 3D) and the imaged Targray PE16A 
(PE) and Celgard® PP1615 (PP) separator microstructures of edge lengths 5 µm each. The values for χ and c are calculated via the Minkowski 
functional M3.  
 

Parameter 1D 2D 3D PE PP 
Porosity m0 [%] 39.95±0.00 40.48±0.07 41.04±0.04 40.53±0.77 40.19±0.42 
Specific surface area m1 [µm-1] 13.94±0.00 12.11±0.02 11.62±0.02 11.72±0.13 5.22±0.14 
Shape factor density m2 [µm-2] 17.40±0.01 7.82±0.03 5.44±0.03 6.68±0.35 1.54±0.07 
Topological invariant density χ [µm-3] 7.23±0.00 -102.71±0.16 -117.36±1.15 -143.15±6.88 -7.43±0.51 
Connectivity density c [µm-3] 0.00±0.00 102.71±0.16 117.37±1.15 143.16±6.88 7.44±0.51 
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the shape factor density decreases (from 17.40 µm-

2 to 7.82 µm-2 in 2D and 5.44 µm-2 in 3D).  
 
The PE separator’s shape factor density (6.68 µm-2) 
is comparable to the ones of the datasets with 
straight pores in 2 and 3 directions, while the PP 
separator’s shape factor density is lower (1.54 µm-

2) because of its higher proportion of concave re-
gions at the pore surface. 
 

4. Algorithm to generate artificial separator 
geometries  

The following paragraph describes an algorithm to 
generate an artificial separator geometry consisting 
of solid elements and pore space. The pores are cy-
lindrical and their orientation is always parallel to 
the IP1, IP2, or TP direction. 
At first, a cuboid with desired dimensions is de-
fined. In three different datasets, we create pores 
in the TP direction (1D pore directionality), pores 
parallel to the TP and IP1 direction (2D pore direc-
tionality), and pores parallel to the TP, IP1, and IP2 
axis (3D pore directionality). The desired porosity of 
40 % is divided by the number of pore directions 
(one, two, or three) in order to get the same poros-
ity in all directions. The pore generating process 
consists of two major steps. 
(i) On the face orthogonal to each desired pore di-
rection, circles with a predefined radius (130 nm) 
are generated in an iterative manner. The number 
of circles is set by the porosity. The location of the 
circles is random with the only constraint that they 
cannot touch or intersect. 
(ii) As soon as the necessary quantity of circles is 
created, they are extended through the entire sep-
arator producing the pores. 

If more than one pore direction is wanted, the total 
porosity might be smaller than the addition of the 
directional porosities since pores may intersect. In 
this case, a new pore generating iteration is induced 
(starting from (i)) whereby the shortage in porosity 
is converted into the new number of circles to be 
created. This procedure runs until the target poros-
ity of 40±2 % is met. 
 
While the artificially generated 1D microstructures 
consist of individual pores that are not intercon-
nected amongst each other, the artificially gener-
ated 2D and 3D microstructures are strongly inter-
connected and form a single connected pore net-
work. This interconnectivity is not an implicit result 
of our algorithm for creating artificial microstruc-
tures, however, at 40 % porosity, it is extremely un-
likely for cylindrical pores to penetrate 5 µm (= 500 
voxels) thick structures without crossing another 
pore (probability ~ (0.6)500). Therefore, none of the 
used artificially generated 2D and 3D microstruc-
tures contain isolated, non-interconnected pores. 
 
Artificially generated 2D and 3D microstructures 
contain high fractions of third order nodes (see Ta-
ble III). Nodes of order four (or higher) are only cre-
ated if the central skeleton lines of two (or more) 
pores intersect in one single point. For pores of final 
diameter, such events have a low likelihood, and for 
most intersecting pores, the central skeleton lines 
of these pores will not intersect. Thus, several third 
order nodes are created instead of one single 
higher order node.
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5. Shape analysis 
For a 2D network, the connectivity C (number of 
loops) can be calculated via  

C = 	NW − NX − NY. + 1 
with NB being the number of branches, NN being the 
number of nodes, and NEP being the number of end 
points.11 The description for connectivity using 
branches, end-points, and nodes is valid only in 2D; 
in 3D, the correct description uses edges, faces, and 
vertices of the single voxels. 
For our structures with 1D and 2D pore directional-
ity, the values for connectivity using the descrip-
tions for 2D and 3D are the same. For the artificially 
generated pore structures in 3D and the recorded 
datasets, the values obtained via the 2D description 
are off by less than ±1 % compared to the values 
obtained via the 3D description. 
 

6. Network analysis log-log-plots 
In network theory, it is common to assess the node 
order distributions on a log-log plot. A Poisson dis-
tribution indicates a random network and power 
law distribution indicates a scale-free network. 
 

 
 
Figure S2. Log-log-plots of the node order distribution of the 2D 
and 3D reference datasets and the imaged PE and PP datasets.  

 Figure S2 shows that node order distribution in the 
2D and 3D dataset follows an exponential distribu-
tion, while the distributions of the PE and PP da-
tasets seem to follow a power law. However, to 
quantify the scaling of the node order, the distribu-
tion should exhibit a linear relationship on a log-log-
plot over at least two orders of magnitude in both 
the x and y axes.12 In standard processing of voxel-
based data only nodes of order 3-6 can be reliably 
identified.13  The x axis of Figure S2, therefore, 
spans less than one order of magnitude. 
 

7. Pore orientation analysis 
We determine the pore orientation angle distribu-
tion using ImageJ’s Directionality plugin for the non-
processed datasets for the PE (Figure S3a) and PP 
(Figure S3b) separators. As illustrated in the left-
most images, the orientation angle is calculated for 
all pores in a plane, and each plane is indexed by 
the slice number in a specific direction (TP, IP1, or 
IP2). A vertical cut through any of the pore orienta-
tion angle distribution density plots (three plots to 
the right), would yield a histogram that represents 
the pore orientation distribution for that slice. For 
a slice (i.e., plane) with pores perpendicular to the 
slice, the orientation angle is 0°. 
In the PE separator, for slices along the TP direction, 
the peak of the pore orientation distribution varies 
between 0° and 180°. This may be attributed to the 
presence of fibres in the IP direction located at dif-
ferent separator depths. For slices in the IP1 and IP2 
directions, the pore orientation distributions are 
broadly and asymmetrically centred above 0°, indi-
cating pores slanted at many different angles.  
For PP, slices along the TP and IP1 are similar with 
orientation angle histograms centred around 90° 
due to its straight pore in the TP and IP1 directions.  
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Figure S3. Orientation angle distributions across TP, IP1, and IP2 directions of the greyscale value, non-processed datasets of (a) Targray 
PE16A, and (b) Celgard® PP1615 separators.

8. End point analysis 
The skeletonized pore space of the reference and 
imaged datasets of 5 µm edge length gives the total 
number of branches in the sub-volume, NB. To ob-
tain the number of network branches, Nn, we prune 
the skeletonized datasets using ImageJ’s Anal-
yseSkeleton 2D/3D plugin. Subtracting the pruned 
skeleton from the original skeleton gives the num-
ber, NEP* = NB – Nn, of the end point branches within 
the volume and their coordinates. To account for 
end points that stem from cropping the datasets, 
we discard end point branches with coordinates 
within 5 voxels of the sub-volume’s surface. We de-
termine the end point density as the number of end 
point branches per volume (NEP* / V), and the per-
centage of end point branches as the fraction of end 
point branches and the total number of branches 
(NEP* / NB). 
 

9. Steady-state diffusion simulations 
We simulate the C-rate dependence of the electro-
lyte salt concentration gradient across a Li0|separa-
tor|LTO cell as shown in Figure S4 and as described 
in our earlier work (Zahn et al., 
DOI:10.1021/acsami.6b12085).14 For detailed infor-
mation about the simulation parameters (e.g., elec-
trolyte properties, electrode properties) the reader 
is referred to the Supporting Information of this ar-
ticle. 
 

 
 
Figure S4. C-rate dependence of electrolyte salt concentration 
for Li0|separator|LTO cells with Targray PE16A separator. 
 
At 1C, a concentration difference of 0.25 M builds 
up across the 16 µm thick separator; this corre-
sponds to a concentration difference of ~50 mM 
across a sub-volume of 3 µm edge length and to in-
let and outlet concentrations of 1.25 and 1.20 M, 
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respectively. We plot the broadening of the electro-
lyte salt concentration at each depth in the TP di-
rection for artificially generated and imaged da-
tasets (Figure 4 in the main text). In the Supplemen-
tary Material of Ref. 15, we show the simulated ion 
concentration gradient in a graphite vs. NMC cell. 
 

  
 

Figure S5. Calculated concentration broadening as function of 
sub-volume edge length of separator volume and corresponding 
concentration difference. 
 
In Figure S5, we plot the concentration broadening 
(i.e., histogram width at half-depth of sub-volume) 
calculated for sub-volumes of 3, 4 and 5 µm (blue 
data points) against the concentration difference 
across a separator sub-volume (lower x-axis, range 
of values from Figure S4) and the edge length of the 
separator sub-volume (upper x-axis), and extrapo-
late the broadening of the electrolyte salt concen-
tration to edge lengths of 12-16 µm (orange data 
points). 
 

10. Adding nanofibers to Celgard® PP1615 
separator geometries 

Due to resolution limitations, the measured PP da-
taset does not feature the amorphous PP nano-
fibers spanning the large pore channels (partially 
visible in the SEM in Figure 1b). To assess how the 
presence of nanofibers in the large pore channels 

affects effective transport and topological proper-
ties of the separator geometry, cylindrical nano-
fibers with a diameter of 40 (thin nanofibers) and 
60 nm (thick nanofibers) and distances of 50-70 nm 
are added to the pore channels of the recorded PP 
dataset. The diameter and the distances are esti-
mated from FIB-SEM cross-sectional images. 
At first, the existing separator geometry is loaded 
and rotated such that the direction along which the 
fibres have to be created corresponds to the IP2 
axis. Then, the geometry is up-scaled isotropically 
in order to decrease voxel size followed by three-
dimensional smoothing with a Gaussian kernel. 
Start points of a given number of fibres are ran-
domly generated in the IP direction. The direction 
of each fibre is slightly deflected at random such 
that a direction distribution is created. A fibre ends 
as soon it (re-)enters the other side of the separa-
tor. All fibres are dilated to the desired radius and 
in a final step, the resulting structure is smoothed 
again. 
 

11. Celgard® PP1615 separator geometries 
without and with nanofibers  

Figure S6 shows that there is little difference be-
tween the calculated density plots for the electro-
lyte salt concentrations across a sub-volume of the 
PP1615 separator as imaged and with added nano-
fibers.  
Thus, we conclude that – from a geometric perspec-
tive – the effective transport properties are not af-
fected significantly by the presence of the PP nano-
fibers. The effect of the nanofibers cannot be ne-
glected when modelling the mechanical properties 
of PP separators, as shown by Xu et al.16 for Cel-
gard® 2400 separator. 
 

Table T2. Normalised Minkowski functionals m0, m1, m2, as well as Euler-Poincaré characteristic and connectivity densities, χ and c, respec-
tively, for a PP separator microstructure of edge length 3 µm as imaged, and with thin and broad nanofibers. The values for χ and c are 
calculated via the Minkowski functional M3. 
 

Datasets PP1615 PP1615 with nanofibers  
of diameter 40 nm  

PP1615 with nanofibers  
of diameter	60 nm 

Porosity m0 [%] 39.38 38.56 35.80 
Specific surface area m1 [µm-1] 5.30 7.66 7.08 
Shape factor density m2 [µm-2] 1.82 -3.31 -0.07 
Topological invariant density χ [µm-3] -6.70 -94.07 -54.89 

Connectivity density c [µm-3] 6.74 94.11 54.93 
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Figure S6. Electrolyte salt concentration across a sub-volume of 
3 µm edge length of the Celgard® PP1615 separator dataset with 
artificially added thin (40 nm) and broad (60 nm) nanofibers. 
 
The calculated Minkowski functional densities 
listed in Table T2 show that adding nanofibers to 
the PP dataset results in a lower porosity, an in-
creased specific surface area, a negative shape fac-
tor, and a more negative topological invariant. The 
latter corresponds to a more positive connectivity 
density (up to ~100 µm-3), which is below the calcu-
lated connectivity density of PE. Since the surface 
integral of the mean curvature can be interpreted 
as the average of the mean curvature, a more posi-
tive shape factor indicates the presence of more 
convex parts. A negative shape factor like in the 
case of added nanofibers indicates thus more con-
cave regions. For Table T2, we calculate the inten-
sive Minkowski functionals for a single dataset of 3 
µm edge length; in Table II in the main text, we cal-
culate the average and standard deviation of the in-
tensive Minkowski functionals for three datasets of 
5 µm edge length. 
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