Electronic Supplementary Information

Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers
Zhen Wei ${ }^{a}$, Meili Liu ${ }^{b}$, Zijian Zhang ${ }^{a}$, Wenqing Yao ${ }^{a}$, Hongwei Tan ${ }^{b}$ and Yongfa Zhu ${ }^{a *}$
${ }^{\text {a }}$ Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
${ }^{\mathrm{b}}$ College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

Corresponding author:
Yongfa Zhu; Address: Department of Chemistry, Tsinghua University, Beijing, 100084, China;
Email: zhuyf@tsinghua.edu.cn; Tel.: (+86)10-6278-7601; Fax: (+86)10-6278-7601.

Experimental section

Synthesis

50 mmol of dicyandiamide and 0.5 mmol of ammonium paratungstate were thoroughly ground in a mortar and mixed well, then transferred to a lidded crucible, then they were calcined in a corundum crucible at $400,450,475,500,525,550^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the product was obtained. Marked as $\mathbf{O C N}-\mathbf{4 0 0}, \mathbf{4 5 0}, \mathbf{4 7 5}, \mathbf{5 0 0}, \mathbf{5 2 5}, \mathbf{5 5 0}$, respectively.
$\mathbf{g}-\mathbf{C}_{\mathbf{3}} \mathbf{N}_{\mathbf{4}}$: Dicyandiamide calcined alone at 500 for 4 h , labelled as $\mathbf{g}-\mathbf{C}_{3} \mathbf{N}_{4}$, as a reference sample.
$\mathbf{W O}_{3}$: Ammonium paratungstate calcined alone at 500 for 4 h , labelled as $\mathbf{W O}_{\mathbf{3}}$, as a tungsten oxide reference sample.

Samples characterizations

The morphologies and structures of materials were measured by TEM operated on Hitachi HT 7700 at 100 kV . Details morphologies were observed by HAADF-STEMEDX on the JEM-2100F field emission high-resolution transmission electron microscope at 200 kV with high angle annular dark-field STEM. Field emission scanning electron microscopy (FESEM) was observed on a Hitachi SU-8010 at 10 kV . Atomic force microscopy (AFM) measurements were carried out by using a SPM-9700 scanning probe microscope (Shimadzu Corporation). The samples for AFM measurements were prepared by spraying a diluted suspension of the sample on a freshly cleaved mica surface and then dried in air. Powder X-ray diffraction (XRD) was measured on Rigaku D/max-2400 with $\mathrm{Cu} \operatorname{K} \alpha 1(\lambda=1.5418 \AA)$ radiation at 40 kV and 200 mA . The Brunauer-Emmett-Teller (BET) surface area measurements were
performed by using a micromeritics (ASAP 2010 V 5.02 H) surface area analyzer. The nitrogen adsorption and desorption isotherms were measured at 77 K after degassing the samples on a Sorptomatic 1900 Carlo Erba Instrument. The UV-visible diffuse reflectance spectroscopy (DRS) of materials were carried out on Hitachi U-3010 spectrophotometer using BaSO_{4} as a reference. Fourier transform infrared spectra (FTIR) were taken on Bruker VERTEX-70 spectrometer from $4000 \mathrm{~cm}^{-1}$ to $600 \mathrm{~cm}^{-1}$ with the resolution of $1 \mathrm{~cm}^{-1}$. The room temperature photoluminescence (PL) spectra of materials were recorded on Perkin-Elmer LS55 spectrophotometer. X-ray photoelectron spectroscopy (XPS) was measured on a PHI Quantera SXM spectrometer using Al Ka radiation. In situ electron paramagnetic resonance (EPR) measurement was taken on an Endor spectrometer (JEOL ES-ED3X) at 103 K in liquid nitrogen. The g factor was obtained by taking the signal of manganese as a standard. Solid state NMR for ${ }^{13} \mathrm{C}$ magic angle spinning (MAS) measurements were carried out on JNM-ECZ600R solid-state NMR with the probe diameter $3.2 \mathrm{~mm}, 12 \mathrm{kHz}$ rotating speed and 2 s relaxation time.

Electrochemical and photoelectrochemical measurements

The photoelectrochemical properties were evaluated in a conventional threeelectrode cell system on CHI 660E (Shanghai, Chenhua) electrochemical workstation. ITO/product sample as the working electrode, a saturated calomel electrode (SCE) as the reference electrode and a Pt wire used as the counter electrode. $0.1 \mathrm{M} \mathrm{Na} \mathrm{NO}_{2} \mathrm{SO}_{4}$ aqueous solution was used as the electrolyte. To remove the dissolved oxygen, N_{2} was
bubbled into the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution for 30 minutes before measurement. The working electrode was irradiated by a 300 W Xe lamp (Institute for Electric Light Sources, Beijing) and the light intensity was about $100 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$.

Rotating disk electrode (RDE) measurements

The measurements were performed on a Pine AFMSRXE 1523 advanced electrochemical system with a three-electrode cell using an $\mathrm{Ag} / \mathrm{AgCl}$ electrode and a Pt wire electrode as the reference and counter electrode, respectively ${ }^{1}$. The working electrode was prepared as follows: catalysts (50 mg) were dispersed in EtOH (2 ml) containing Nafion (50 mg) by ultrasonication. The slurry ($20 \mu \mathrm{l}$) was put onto a Pt disk electrode and dried at room temperature. The linear sweep voltammogram (LSV) were obtained in an O_{2}-saturated 0.1 M phosphate buffer solution (pH 7) with a scan rate 10 $\mathrm{mV} \mathrm{s}^{-1}$ after O_{2} bubbling for 5 min . The average number of electrons (n) involved in the overall O_{2} reduction was determined by the slopes of the Koutecky-Levich plots with the following equation:
$\mathrm{j}^{-1}=\mathrm{j}_{\mathrm{k}}{ }^{-1}+\mathrm{B}^{-1} \omega^{-1 / 2}$
$\mathrm{B}=0.2 \mathrm{nFv}^{-1 / 6} \mathrm{CD}^{2 / 3}$
j is the current density, j_{k} is the kinetic current density, ω is the rotating speed (rpm), F is the Faraday constant $\left(96485 \mathrm{C} \mathrm{mol}^{-1}\right), v$ is the kinetic viscosity of water $\left(0.01 \mathrm{~cm}^{2} \mathrm{~s}\right.$ $\left.{ }^{-1}\right)$, C is the bulk concentration of O_{2} in water $\left(1.26 \times 10^{-3} \mathrm{~mol} \mathrm{~cm}^{-3}\right)$, and D is the diffusion coefficient of $\mathrm{O}_{2}\left(2.7 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$, respectively.

Transient photovoltage (TPV) measurements

TPV measurements were carried out to study the kinetic features of the photogenerated charges with a 355 nm laser pulse from a third-harmonic Nd:YAG laser. ${ }^{2,3}$ TPV measurements were carried out on a home-made system in air atmosphere at room temperature. The samples were excited with a laser radiation pulse with the wavelength of 355 nm and pulse width of 5 ns from a third-harmonic Nd:YAG laser (Polaris II, New Wave Research, Inc.). Moreover, The TPV signal was recorded with a 500 MHz digital phosphor oscilloscope (TDS 5054, Tektronix).

Photocatalytic reduction of oxygen to hydrogen peroxide

The photocatalytic reduction of O_{2} to $\mathrm{H}_{2} \mathrm{O}_{2}$ was analyzed according to the literature with a slight modification ${ }^{4,5} .50 \mathrm{mg}$ of photocatalyst suspended in 50 mL of water (or isopropanol: 5 mL and water: 45 mL) was placed Pyrex test tube. The suspension solutions were first ultrasonically dispersed for 30 min in the dark and then stirred for 30 min before irradiation to reach the absorption-desorption equilibrium. The light source was provided by a Xe lamp at 300 W with 420 nm cutoff filter. The average light intensity was $35.2 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$. At certain time intervals, 3 mL solution was sampled and centrifuged to remove the photocatalysts, and then filtrated with a $0.45 \mu \mathrm{~m}$ Millipore filter to remove the photocatalyst. The reactions were carried out in the air atmosphere without special instructions. If compare the different atmospheres, it need to bubble N_{2} or O_{2} into the suspension solutions for 30 min before measurement. Keep the temperature at 298 K during all reactions.

The apparent quantum yields for $\mathrm{H}_{2} \mathrm{O}_{2}$ formation was determined using the equation: $\operatorname{AQY}(\%)=\left(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.\right.$ formed $\left.\left.(\mathrm{mol})\right] \times 2\right) /[$ photon number entered into the reaction vessel (mol)] $\times 100$.

The amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ was analyzed by iodometry. ${ }^{6} 1 \mathrm{~mL}$ of $0.1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ potassium hydrogen phthalate $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{KO}_{4}\right)$ aqueous solution and 1 mL of $0.4 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ potassium iodide (KI) aqueous solution were added to obtained solution, which was then kept for 30 min . The $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules reacted with iodide anions (I^{-}) under acidic conditions $\left(\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}\right)$ to produce triiodide anions $\left(\mathrm{I}_{3}^{-}\right)$possessing a strong absorption at around 350 nm . The amount of $\mathrm{I}_{3}{ }^{-}$was determined by means of UV-vis spectroscopy on the basis of the absorbance at 350 nm , from which the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ produced during each reaction was estimated.

Photocatalytic H_{2} evaluation

The photocatalytic activities of the as-prepared samples were evaluated by using a Perfect Light agitated reactor (LabSolar-III AG). A visible light source was obtained by using a 300 W Xe lamp with a 420 nm cut-off filter. 50 mg photocatalyst was added into 100 mL solution $(90 \mathrm{~mL}$ deionized water and 10 mL triethanolamine as sacrificial agent). Before light irradiation, the suspensions were first ultrasonically dispersed in the dark for 30 min . At given time intervals (1 h), a certain amount of gas was taken from the reactor for gas concentration analysis using an online gas chromatograph (GC7800) with a thermal conductivity detector (TCD) and using N_{2} as carrier gas. Product gases were calibrated with standard H_{2} gas and their identities were determined according to the retention time.

Photocatalytic degradation evaluation

The photocatalytic activity of the samples were evaluated by the photodegradation efficiency of phenol and 2,4-DCP solution under the irradiation of visible light. The light source was provided by a Xe lamp at 300 W with 420 nm cutoff filter. The average light intensity was $22 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$. The photodegradation reactions were measured in the quartz tube reactors with 20 mg as-prepared photocatalysts powders and 50 mL phenol or 2,4-DCP solution with a concentration of 5 ppm . The suspension solutions were first ultrasonically dispersed for 30 min in the dark and then stirred for 30 min before irradiation to reach the absorption-desorption equilibrium. At certain time intervals, 3 mL solution was sampled and centrifuged to remove the photocatalysts, and then filtrated with a $0.45 \mu \mathrm{~m}$ Millipore filter to remove the photocatalyst. The concentration of phenol and 2,4-DCP was analyzed by using the HPLC system (Shimadzu LC-20AT) with a C18 reversed phase column and an UV absorbance detector (K 2501). The determination wavelength was 270 nm (phenol) or 284 nm (2,4-DCP). The mobile phase was $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ (volume ratio: 60:40 (phenol) or $75 / 25(2,4-\mathrm{DCP})$) with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

Theoretical calculations

Geometry optimizations for all structures were carried out by using the DFT functional B3LYP with 6-31G (d) basis sets. Frequence calculations were done to confirm the stationary points at the same level. High accuary energies were calculated by using the PBE0 functional with 6-311G(d) basis sets. All calculations were performed using the

Gaussian09 program. For the species C, all the possible spin states were canvassed and computational results shows that the triplet spin state with anti-parallel spin density on the C 1 and N 4 atoms is the ground spin state.

Fig. S1 The structure of OCN models (-OH and C-O-C) and g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ model.

Fig. S2 The mechanism of OCN model $(-\mathrm{OH})$ photocatalytic O_{2} reduction to synthesis

Fig. S3 The mechanism of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}\left(-\mathrm{NH}_{2}\right)$ photocatalytic O_{2} reduction to synthesis $\mathrm{H}_{2} \mathrm{O}_{2}$.

Table S1. The energy of $b \rightarrow c$

\square	b	c	acetone	isopropanol	$\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$
1(C-O-C)	2187.6877	2188.8810			4.2
$2(-\mathrm{OH})$	2187.7019	2188.8772	192.9783	194.1782	15.5
$3\left(-\mathrm{NH}_{2}\right)$	2167.8512	2169.0256			16.0

$\Delta \mathrm{E}(\mathrm{b} \rightarrow \mathrm{c})=\mathrm{E}(\mathrm{c})+\mathrm{E}($ acetone $)-\mathrm{E}(\mathrm{b})-\mathrm{E}($ isopropanol $)$
Table S2. The energy of $\mathrm{e} \rightarrow \mathrm{a}$

	e	a	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$
1(C-O-C)	-2339.1981	-2187.8003		-18.3
$2(-\mathrm{OH})$	-2339.2344	-2187.8117	-151.4270	-2.7
$3\left(-\mathrm{NH}_{2}\right)$	-2319.3767	-2167.9620		-7.8

$\Delta \mathrm{E}(\mathrm{e} \rightarrow \mathrm{a})=\mathrm{E}(\mathrm{a})+\mathrm{E}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)-\mathrm{E}(\mathrm{e})$

Fig. S4 XRD patterns (a) of the samples.

Table S3. The BET surface and product weight of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and OCN samples

Number	$\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	$\mathrm{OCN}-400$	$\mathrm{OCN}-450$	$\mathrm{OCN}-475$	$\mathrm{OCN}-500$	$\mathrm{OCN}-525$	$\mathrm{OCN}-550$
$\mathrm{BET} / \mathrm{m}^{2} \cdot \mathrm{~g}^{-1}$	5.4201	8.3905	24.4578	25.4737	30.9021	29.8451	12.6376
Product weight $/ \mathrm{g}$	2.5560	2.8876	1.9255	1.7742	0.9891	0.4451	0.1149

Fig. S5 N_{2} adsorption-desorption isotherms of different samples.

Fig. S6 BJH pore-size distribution of different samples.
Nitrogen adsorption-desorption isotherms (Figure S5) show that CW-500 exhibits a high Brunauer-Emmett-Teller (BET) surface area of $30.9021 \mathrm{~m}^{2} \mathrm{~g}^{-1}$. The average pore diameter is about 15.64 nm (Figure S6).

Fig. S7 (a) FE-SEM images of OCN-500; (b) TEM images of OCN-500; (c) HR-TEM images of OCN-500; (d)HAADF-STEM images of OCN-500, EDS mapping results W (f) and $\mathrm{N}(\mathrm{g})$ and overlay of HAADF-STEM of W (yellow) and N (blue) elements of OCN-500 (e).

Fig. S8 FE-SEM images of different samples.

Fig. S9 TEM images of $g-\mathrm{C}_{3} \mathrm{~N}_{4}, \mathrm{OCN}-500$ and OCN-550.

Fig. S10 AFM images of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (a) and $\mathrm{OCN}-500$ (b).

Fig. S11 (a) Diffuse reflectance absorption spectra of the samples; (b) gap energies of g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{OCN}-500$.

Fig. S12 Electrochemical Mott-Schottky curves of g-C C_{3} (a) and OCN-500 (b).

Fig. S13 FT-IR spectra of samples.

Fig. S14 Solid-state ${ }^{13} \mathrm{C}$ CP-MAS NMR of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{OCN}-500$.

Fig. S15 O 1s high-resolution XPS spectra of $g-\mathrm{C}_{3} \mathrm{~N}_{4}$.

Fig. S16 O 1s high-resolution XPS spectra of OCN-500 and OCN-550.

Fig. S17 The photocatalytic generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ in pure water under visible light irradiation with air atmosphere.

Fig. S18 UV-vis absorption spectrum changes of $\mathrm{H}_{2} \mathrm{O}_{2}$ generation of OCN-500 in isopropyl alcohol under visible light irradiation.

The MS spectrum of R.T. was 2.295 min .

The MS spectrum of R.T. was 3.717 min .
Fig. S19 Gas Chromatography-Mass Spectrometry (GC-MS) analysis for OCN-500 photocatalytic generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ with 10% isopropyl alcohol under visible light irradiation.

Fig. S20 The photocatalytic generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ by OCN-500 for four times with 10% isopropyl alcohol under visible light irradiation.

Fig. S21 XRD patterns of OCN-500 after 4 cycles of the photocatalytic generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ with 10% isopropyl alcohol under visible light irradiation.

Fig. S22 Photocatalytic degradation of phenol and 2,4-DCP by different samples under visible light irradiation.

Fig. S23 Diffuse reflectance absorption spectra (left axis) of OCN-500 and apparent quantum yield (AQY, right axis) of g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{OCN}-500$ photocatalytic $\mathrm{H}_{2} \mathrm{O}_{2}$ production with monochromatic light irradiation. The experimental conditions were as follows: $1 \mathrm{~g} / \mathrm{L}$ of photocatalyst, $10 \mathrm{vol} \%$ of isopropyl alcohol, and O_{2}-saturated.

Fig. S24 Electrochemical impedance spectroscopy Nyquist plots of g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ with saturated Ar or O_{2} atmosphere.

Fig. S25. Room temperature time-resolved transient photoluminescence decays spectroscopy for $\mathrm{OCN}-500$ and $g-\mathrm{C}_{3} \mathrm{~N}_{4}$, excited at 360 nm .

Fig. S26. The photocatalytic generation of $\mathrm{H}_{2} \mathrm{O}_{2}$ with 10% isopropyl alcohol under visible light irradiation. (g-C $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{WO}_{3}$: g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ and WO_{3} are ground and mixed according to the ratio of carbon nitride and tungsten in OCN-500)

Fig. S27. LSV curves of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (a) and $\mathrm{OCN}-500$ (b) measured on RDE analysis at different rotating speeds.

Fig. 28 Cyclic voltammetry for OCN-500 in acetonitrile solution. Experiment conditions: $0.1 \mathrm{M} \mathrm{TBAP} \mathrm{(tetra-n-butylammonium} \mathrm{perchlorate)} \mathrm{scan} \mathrm{rates} 10 \mathrm{mV} /$,s , A silver wire was used as a reference electrode. All solutions were thoroughly degassed with N_{2} before each experiment, and an inert atmosphere was maintained during the experiments.

Fig. S29. The simulation ESR spectra of OCN-500 under visible light irradiation by the "Isotropic Radicals" software.
The simulation were performed by "Isotropic Radicals" software. In Fig. S29, Avalue represents hyperfine splitting constants. The type of free radicals were judged from the A -value.
In component- $1, \mathrm{~A}_{\mathrm{N}}=14, \mathrm{~A}_{\mathrm{H}}=10$ attributed to $\mathrm{ROO} \cdot ;$ In component-2, $\mathrm{A}_{\mathrm{N}}=14.1 \mathrm{~A}_{\mathrm{H}}=7.9$ attributed to $\mathrm{RO} \cdot$; In component-3, $\mathrm{A}_{\mathrm{N}}=14.6, \mathrm{~A}_{\mathrm{H}}=10$ attributed to $\mathrm{RN} \cdot$; In component-4, $\mathrm{A}_{\mathrm{N}}=15, \mathrm{~A}_{\mathrm{H}}=22$ attributed to $\mathrm{R} \cdot$.

Table S4. A detailed comparison of photocatalytic $\mathrm{H}_{2} \mathrm{O}_{2}$ production by different
photocatalysts

Catalyst	Conditions	Formed $\mathrm{H}_{2} \mathrm{O}_{2}$	Ref.
OCN-500	$\mathrm{O}_{2} ; 1 \mathrm{~g} / \mathrm{L}$ (catalyst), $10 \mathrm{vol} \%$ of 2-propanol, in water ($\mathrm{pH}=7$); Xe-lamp $\lambda \geq 420 \mathrm{~nm}, 35.2$ $\mathrm{mW} / \mathrm{cm}^{2} ; 298 \mathrm{~K}$	$730 \mu \mathrm{~mol}$ for 5 h	This work
OCN-500	$\mathrm{O}_{2} ; 1 \mathrm{~g} / \mathrm{L}$, in the pure water; Xe-lamp $\lambda \geq 420 \mathrm{~nm}, 35.2 \mathrm{~mW} / \mathrm{cm}^{2} ; 298 \mathrm{~K}$	$53 \mu \mathrm{~mol}$ for 10 h	This work
g-C ${ }_{3} \mathrm{~N}_{4} / \mathrm{PDI}$	$\mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L}$; in the pure water; $420-500$ $\mathrm{nm}, 43.3 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$14 \mu \mathrm{~mol}$ for 24 h	1
g- $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{PDI} /$ rGO0. 05	$\mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L}$; in the pure water; Xe-lamp $420-500 \mathrm{~nm}, 43.3 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$29 \mu \mathrm{~mol}$ for 24 h	1
$\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{PDI} / \mathrm{rGO} 0.05$	$\mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L} ; 90 \mathrm{vol} \%$ of 2-propanol; Xelamp 420-500 nm, $43.3 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$400 \mu \mathrm{~mol}$ for 6 h	1
g-C ${ }_{3} \mathrm{~N}_{4} / \mathrm{PDI} 51$	$\mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L}$,;in the pure water; Xe-lamp $420-500 \mathrm{~nm}, 26.9 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$50.6 \mu \mathrm{~mol}$ for 48h	7
$g-\mathrm{C}_{3} \mathrm{~N}_{4}$	$\mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L} ; 90 \mathrm{vol} \%$ of 2-propanol, Xelamp 420-500 nm, $26.9 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$148 \mu \mathrm{~mol}$ for 6 h	7
g-C ${ }_{3} \mathrm{~N}_{4} /$ PDI51	$\begin{gathered} \mathrm{O}_{2} ; 1.67 \mathrm{~g} / \mathrm{L} ; 90 \mathrm{vol} \% \text { of 2-propanol, } \\ \quad 420-500 \mathrm{~nm}, 26.9 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K} \end{gathered}$	$210 \mu \mathrm{~mol}$ for 6 h	7
$g-\mathrm{C}_{3} \mathrm{~N}_{4}$	O2; $4 \mathrm{~g} / \mathrm{L}, 90 \mathrm{vol} \%$ of ethanol, Xe-lamp $420-500 \mathrm{~nm}, 26.9 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$30 \mu \mathrm{~mol}$ for 12 h	8
Mesoporous g- $\mathrm{C}_{3} \mathrm{~N}_{4}$	$\mathrm{O}_{2} ; 4 \mathrm{~g} / \mathrm{L}, 90 \mathrm{vol} \%$ of ethanol, Xe-lamp $420-500 \mathrm{~nm}, 26.9 \mathrm{~W} / \mathrm{m}^{2} ; 298 \mathrm{~K}$	$92 \mu \mathrm{~mol}$ for 24 h	9
CdS-graphene oxide	O_{2}-saturated; $0.5 \mathrm{~g} / \mathrm{L} ; 5 \mathrm{vol} \%$ of methanol, $\mathrm{pH}=4.0 ; \lambda_{\mathrm{Ex}}=635 \mathrm{~nm}, 23$ $\mathrm{mW} / \mathrm{cm}^{2}$	$95 \mu \mathrm{M}$ for 1 h ,without longer reaction	10
reduced graphene oxide- TiO_{2}	O_{2}-saturated; $0.5 \mathrm{~g} / \mathrm{L}, 0.1 \mathrm{M}$ phosphate buffer, 5 vol\% 2-propanol, $\mathrm{pH}=3.0, \boldsymbol{\lambda} \geq \mathbf{3 2 0}$ nm	4.8 mM for 3 h	11
CoP decorated $\begin{gathered} \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4} \\ (50 \mathrm{Co} / \mathrm{CN}) \end{gathered}$	O_{2}-saturated; $1 \mathrm{~g} / \mathrm{L} ; 10 \mathrm{vol} \%$ of ethanol; Xe-lamp $\lambda \geq 420 \mathrm{~nm}$	$140 \mu \mathrm{M}$ for 2 h	12
$g-\mathrm{C}_{3} \mathrm{~N}_{4}$	O_{2}-saturated; $1 \mathrm{~g} / \mathrm{L} ; 10$ vol $\%$ of ethanol; Xe-lamp $\lambda \geq 420 \mathrm{~nm}$	$30 \mu \mathrm{M}$ for 2 h	12
CoP decorated g- $\mathrm{C}_{3} \mathrm{~N}_{4}(50 \mathrm{Co} / \mathrm{CN})$	Air;1g/L; 10 vol \% of ethanol; Xe-lamp $\lambda \geq 420 \mathrm{~nm}$	$38 \mu \mathrm{M}$ for 2 h	12
$g-\mathrm{C}_{3} \mathrm{~N}_{4}$	Air; $1 \mathrm{~g} / \mathrm{L}$ catalyst; 10 vol $\%$ of ethanol; Xe-lamp $\lambda \geq 420 \mathrm{~nm}$	$10 \mu \mathrm{M}$ for 2 h	12
$\begin{gathered} 3 \mathrm{DOM} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}- \\ \mathrm{PW}_{11} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \text {-saturated; } 1 \mathrm{~g} / \mathrm{L} ; \text { in the pure water; } \lambda \geq \\ 320 \mathrm{~nm} ; 298 \mathrm{~K} \end{gathered}$	$35 \mu \mathrm{~mol}$ for 1 h ; $144 \mu \mathrm{~mol}$ for 6 h	13
$3 \mathrm{DOM} \mathrm{g-C} \mathrm{C}_{4}$	O_{2}-saturated; $1 \mathrm{~g} / \mathrm{L}$; in the pure water; $\lambda \geq$	$13 \mu \mathrm{~mol}$ for 1 h ;	13

	$320 \mathrm{~nm} ; 298 \mathrm{~K}$	$23 \mu \mathrm{~mol}$ for 6h	
melam/ WO_{3}	Air; $1 \mathrm{~g} / \mathrm{L}$; in the pure water; 435 nm LED; $3.0 \mathrm{~mW} / \mathrm{cm}^{2}$	$19 \mu \mathrm{M}$ for 6 h	5
$\mathrm{Pt}-\mathrm{WO}_{3}$	$\begin{gathered} \text { Air; } 1.30 \mathrm{~g} / \mathrm{L} ; 0.43 \mathrm{mM} \text { phenol aqueous } \\ \text { solution; } \mathrm{Xe}-\mathrm{lamp} \lambda \geq 420 \mathrm{~nm}, 25.2 \\ \mathrm{~mW} / \mathrm{cm}^{2} ; \end{gathered}$	$23 \mu \mathrm{M}$ for 1 h , without longer reaction	14
$\mathrm{Bi}_{2} \mathrm{WO}_{6}$	$\begin{gathered} \text { Air; } 1.30 \mathrm{~g} / \mathrm{L} ; 0.43 \mathrm{mM} \text { phenol aqueous } \\ \text { solution; Xe-lamp } \lambda \geq 420 \mathrm{~nm}, 25.2 \\ \mathrm{~mW} / \mathrm{cm}^{2} ; \end{gathered}$	$8 \mu \mathrm{M}$ for 1 h , without longer reaction	14
$\mathrm{Au}_{0.1} \mathrm{Ag}_{0.4} / \mathrm{TiO}_{2}$	$\begin{gathered} \mathrm{O}_{2} ; 1 \mathrm{~g} / \mathrm{L}, 4 \mathrm{vol} \% \text { of ethanol; Hg lamp, } \lambda \\ >\mathbf{2 8 0} \mathbf{n m}, 13.8 \mathrm{~mW} / \mathrm{cm}^{2} ; 298 \mathrm{~K} \end{gathered}$	3.6 mM for 12 h	15

Cartesian Coordinates (in \AA)

l

| | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |

3.							$\left(-\mathrm{NH}_{2}\right)$
N	-3.994298	2.223066	0.408662	C	6.614694	-0.002419	0.162702
C	-3.180347	1.243277	0.840132	H	2.472354	-4.300826	-0.325076
N	-3.796963	0.001396	0.957276	N	-4.112037	-4.444068	-0.270866
N	-1.884751	1.326722	1.121169	C	-3.402131	-5.540021	-0.611665
C	-1.259199	2.411406	0.683955	N	-2.060011	-5.679787	-0.677919
N	0.062481	2.490809	0.712592	C	-1.341451	-4.628749	-0.313763
N	-2.001587	3.469325	0.137947	N	-0.006303	-4.616931	-0.402337
C	-3.410168	3.383793	0.101213	N	-2.004058	-3.46791	0.137769
N	-4.108759	4.446793	-0.271774	C	-3.412595	-3.381454	0.101683
C	-3.397982	5.542182	-0.612595	N	-3.995901	-2.220313	0.40916
N	-2.055792	5.680881	-0.678811	C	-3.18107	-1.240741	0.839517
C	-1.338059	4.62946	-0.314028	N	-1.885279	-1.324703	1.11939
N	-0.002945	4.616699	-0.402234	C	-1.260745	-2.410202	0.682908
C	0.605258	3.5129	0.051397	N	0.060832	-2.490473	0.71115
N	2.005453	-1.154611	-0.55833	C	0.602761	-3.513278	0.050393
C	2.694802	-2.254274	-0.25377	H	-4.775911	0.00176	0.692267
N	1.969783	-3.435193	-0.174824	N	7.954897	-0.002908	0.281122
N	4.013875	-2.369376	-0.049424	H	8.444784	-0.880603	0.359672
C	4.709719	-1.227704	-0.031294	H	8.445352	0.874403	0.360425
N	6.026528	-1.216217	0.112657	N	-4.121641	-6.628371	-0.940427
N	4.018389	-0.001411	-0.134076	H	-3.645382	-7.466681	-1.235123
C	2.644178	-0.000847	-0.427124	H	-5.128457	-6.57555	-0.939964
N	2.006222	1.15349	-0.557599	N	-4.116653	6.631176	-0.941201
C	2.696426	2.252441	-0.252544	H	-5.123445	6.577872	-0.944523
N	4.015568	2.366492	-0.047711	H	-3.639737	7.467831	-1.239544
C	4.710556	1.224316	-0.030218	N	1.972325	3.43392	-0.173406
N	6.027335	1.211803	0.114034	H	2.475582	4.299179	-0.323454

(4) (C-O-C)							
$\mathrm{e}(57$ atoms)							
N	0.229881	-4.383577	-0.163192	N	-5.939324	-1.995851	0.316686
C	-0.339168	-3.344253	-0.759176	C	-6.65933	-0.907281	0.656297
N	-1.72834	-3.450054	-0.89222	N	-6.254239	0.383391	0.697814
N	0.247934	-2.215252	-1.194608	C	-5.021016	0.62222	0.285919
C	1.51247	-2.095111	-0.853508	N	-4.469102	1.841802	0.35157
N	2.183775	-0.956348	-1.156101	N	-4.234432	-0.447303	-0.188883
N	2.188289	-3.066327	-0.181746	C	-4.698774	-1.777367	-0.097168
C	1.537487	-4.255625	0.170619	N	-3.859409	-2.771013	-0.389806
N	2.172578	-5.173336	0.85296	C	-2.644938	-2.414964	-0.84613
C	3.428106	-4.832005	1.298464	N	-2.241614	-1.196148	-1.208617
N	4.089844	-3.699984	1.143171	C	-3.000686	-0.190892	-0.803088
C	3.561545	-2.761793	0.291082	N	-2.578498	1.065088	-0.90668
N	3.505945	-1.380973	0.768315	C	-3.251104	1.958292	-0.188358
C	3.463874	-0.685778	-0.49872	H	-2.091911	-4.326116	-0.531667
N	-0.478002	2.267295	0.135149	N	2.850452	7.382966	0.507231
C	-1.245489	3.365368	0.120855	H	2.228827	8.17113	0.605753
N	-2.60922	3.177035	0.037882	H	3.850873	7.510479	0.486153
N	-0.84106	4.639238	0.215509	N	-7.934986	-1.131436	1.016943
C	0.479054	4.84679	0.254313	H	-8.508132	-0.358744	1.318831
N	0.992283	6.05979	0.379171	H	-8.283522	-2.077329	1.043265
N	1.354248	3.742294	0.133911	N	4.012074	-5.796475	2.051615
C	0.822016	2.452618	0.082846	H	3.567262	-6.699557	2.097724
N	1.65361	1.412766	-0.04193	H	4.983993	-5.697572	2.299852
C	2.946178	1.690465	-0.154684	O	3.805877	0.672174	-0.422137
N	3.552344	2.867043	-0.070745	O	4.515893	-1.243056	-1.275367
C	2.75456	3.931535	0.09463	O	4.40832	-2.672504	-0.937343
N	3.24012	5.152445	0.212942	H	4.400942	-1.181807	1.218756
C	2.338929	6.150484	0.362975	H	1.562161	-0.158066	-1.264389
H	-3.189573	3.958927	0.317073	\square	\sqsubset	\sqsubset	

l

$6 .\left(-\mathrm{NH}_{2}\right)$								$\mathrm{e} 3(58$ atoms
N	3.381945	-2.645948	-0.336582	H	-5.285144	0.32079	0.350869	
C	2.137278	-2.331625	-0.814012	N	-2.559977	-5.669237	0.248531	
N	1.306758	-3.437707	-0.95559	C	-3.858121	-5.508752	0.58249	
N	1.672652	-1.137947	-1.098995	N	-4.568362	-4.362376	0.650619	
C	2.385487	-0.084487	-0.662559	C	-3.933397	-3.255289	0.294541	
N	1.903043	1.129952	-0.717089	N	-4.502955	-2.049278	0.388618	
N	3.639148	-0.317462	-0.091465	N	-2.598366	-3.345358	-0.153657	
C	4.116526	-1.600758	-0.021945	C	-1.907317	-4.575206	-0.117463	
N	5.393565	-1.735391	0.420664	N	-0.605851	-4.591999	-0.41744	
C	6.21169	-0.543142	0.632719	C	-0.082014	-3.430486	-0.84775	
N	5.355125	0.408423	1.324597	N	-0.719766	-2.302752	-1.132486	
C	4.512364	0.84531	0.230288	C	-1.970057	-2.212945	-0.69423	
N	3.808553	2.028527	0.455022	N	-2.614449	-1.058482	-0.715826	
C	2.590418	2.075302	-0.030217	C	-3.771586	-1.016541	-0.053317	
N	1.886783	3.267618	0.173965	H	2.426214	4.117164	0.277513	
N	-2.249116	1.271323	0.557927	H	1.731834	-4.316676	-0.682965	
C	-3.538652	1.41349	0.259641	N	-3.823498	7.128051	-0.253537	
N	-4.289546	0.244562	0.185485	H	-4.826403	7.180582	-0.341046	
N	-4.221267	2.547786	0.057485	H	-3.251045	7.953681	-0.336712	
C	-3.498757	3.673552	0.041897	N	-4.525879	-6.632528	0.902339	
N	-4.066506	4.86188	-0.097103	H	-4.039848	-7.515748	0.899465	
N	-2.094097	3.587931	0.142873	O	6.554934	0.08937	-0.621079	
C	-1.487958	2.35199	0.428095	O	5.442587	1.026997	-0.884133	
N	-0.172558	2.281096	0.555976	H	5.874274	-2.596128	0.190511	
C	0.516249	3.387156	0.258813	H	5.903681	1.218313	1.615672	
N	0.032682	4.625895	0.066605	N	7.435753	-0.942589	1.230823	
C	-1.295067	4.748156	0.046919	H	8.100828	-0.174892	1.231702	
N	-1.885903	5.928433	-0.09008	H	7.282937	-1.27915	2.177698	
C	-3.232591	5.923415	-0.141194	H	-5.489865	-6.570698	1.190951	

References

1. Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, J. Am. Chem. Soc., 2016, 138, 10019-10025.
2. X. Wei, T. Xie, D. Xu, Q. Zhao, S. Pang and D. Wang, Nanotechnology, 2008, 19, 275707.
3. T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, Nanoscale, 2013, 5, 2938-2944.
4. O. Tomita, B. Ohtani and R. Abe, Catal. Sci. Technol., 2014, 4, 3850-3860.
5. Z. Jin, Q. Zhang, L. Hu, J. Chen, X. Cheng, Y.-J. Zeng, S. Ruan and T. Ohno, Appl. Catal., B, 2017, 205, 569-575.
6. C. Kormann, D. W. Bahnemann and M. R. Hoffmann, Environ. Sci. Technol., 1988, 22, 798-806.
7. Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka and T. Hirai, Angew. Chem. Int. Ed., 2014, 53, 13454-13459.
8. Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa and T. Hirai, ACS Catal., 2014, 4, 774-780.
9. Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, ACS Catal., 2015, 5, 3058-3066.
10. H.-i. Kim, O. S. Kwon, S. Kim, W. Choi and J.-H. Kim, Energy Environ. Sci., 2016, 9, 10631073.
11. G.-h. Moon, W. Kim, A. D. Bokare, N.-e. Sung and W. Choi, Energy Environ. Sci., 2014, 7, 4023-4028.
12. Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei and J. Zhang, Eur. J. Inorg. Chem., 2017, 2017, 47974802.
13. S. Zhao, X. Zhao, H. Zhang, J. Li and Y. Zhu, Nano Energy, 2017, 35, 405-414.
14. J. Sheng, X. Li and Y. Xu, ACS Catal., 2014, 4, 732-737.
15. D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, $A C S$ Catal., 2012, 2, 599-603.
