Electronic Supplementary Information (ESI)

Synchronous Immobilization and Conversion of Polysulfides on $\mathbf{VO}_{2}\text{-}$

VN Binary Host Targeting High Sulfur Loading Li-S Batteries

Yingze Song,^{a†} Wen Zhao,^{b†} Long Kong,^c Li Zhang,^{*a} Xingyu Zhu,^a Yuanlong Shao,^d Feng Ding,^b Qiang Zhang,^{*c} Jingyu Sun,^{*a} and Zhongfan Liu^{ae}

^aSoochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.

^bCenter for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 689-798, Republic of Korea.

^cDepartment of Chemical Engineering, Tsinghua University, Beijing 100084, China.

^dCambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, United Kingdom.

^eCenter for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

*Corresponding author: <u>sunjy86@suda.edu.cn</u> (J. Y. Sun); <u>zhang-qiang@mails.tsinghua.edu.cn</u> (Q. Zhang); <u>zhangli81@suda.edu.cn</u> (L. Zhang)

†These authors contributed equally to this work.

Fig. S1 TEM characterization of VO₂-VN binary host. (a-c) Low-magnified TEM views with the yellow boxes highlighting the interface between VO₂ and VN. (d) High-resolution TEM image disclosing the interface of VO₂-VN.

Fig. S2 STEM-EDS characterization of VO_2 -VN. (a) STEM image of VO_2 -VN, with the marked area probed by EDS. (b-d) Corresponding elemental mapping of VO_2 -VN.

Fig. S3 Experimental determination of exact content of VN within the VO₂-VN hybrid (using $3VO_2$ -1VN as an example, with the theoretical VN content of 25 wt%). (a-c) TGA curves of (a) VO₂, (b) VN, and (c) $3VO_2$ -1VN. (d) Digital photograph showing the VO₂ dissolution test by HCl acid treatment. From the TGA measurement, the exact content of VN is determined to be ~24 wt%; As for the dissolution test result, the actual VN content is ~23.4 wt%. Both tests confirm the successful fabrication of $3VO_2$ -1VN hybrid.

Fig. S4 XPS analysis of (a-c) 3VO₂-1VN and (d-f) 1VO₂-3VN binary hosts.

Fig. S5 N₂ adsorption/desorption isotherms of (a) VO_2 , (b) VN, (c) $3VO_2$ -1VN, and (d) $1VO_2$ -3VN. The derived BET surface area value is displayed in each panel, respectively.

Fig. S6 SEM image of S@3VO₂-1VN/G cathode before cycling.

Fig. S7 UV-Vis absorption spectra of a Li_2S_6 solution prior to and after adding $3VO_2$ -1VN binary host for 60 s.

Fig. S8 XRD patterns for as-prepared VO_2 and VN, indicative of dominating and stable facet of VO_2 (110) and VN (200) facets.

Fig. S9 Optimal configurations of lithium polysulfide Li_2S_x (x = 1, 2, 4, 6, and 8) and S_8 clusters adsorbed on the VO₂ (110) surface.

Fig. S10 Optimal configurations of lithium polysulfide Li_2S_x (x = 1, 2, 4, 6, and 8) and S_8 clusters adsorbed on the VN (200) surface.

Fig. S11 Optimal configurations of lithium polysulfide Li_2S_x (x = 1, 2, 4, 6, and 8) and S_8 clusters adsorbed on the graphene surface.

Fig. S12 XPS V2p spectrum of $3VO_2$ -1VN (a) before and (b) after Li_2S_6 adsorption showing an

obvious change in the valence states for vanadium.

Fig. S13 Top view representations of Li_2S_4 cluster diffusion pathways on VO₂ (110) surface.

Fig. S14 Top view representations of Li⁺ ion diffusion pathways on (a) VN (200) and (b) graphene surfaces.

Fig. S15 Digital photographs and corresponding spatial maps of sheet resistances of various material-based films. Each plot of sheet resistance distributions was collected from 100 data points. (a) VO_2 , (b) VN, (c) $1VO_2$ -3VN, and (d) $3VO_2$ -1VN.

Fig. S16 Cycling performance of bare 3VO₂-1VN at different current densities.

Fig. S17 Investigation of reaction kinetics with respect to catalyzing the oxidation process by $3VO_2$ -1VN binary host. (a) CV profiles of S@ $3VO_2$ -1VN/G cathodes at different scan rates. (b) Plots of CV peak current for anodic oxidation process (Peak iii: Li₂S₂/Li₂S to S₈) vs. the square root of the scan rates for S@ $3VO_2$ -1VN/G and S@G cathodes. Apparently, S@ $3VO_2$ -1VN/G cathodes demonstrate better oxidation reaction kinetics as compared with that of bare S@G cathodes.

Fig. S18 EIS curves of S@VO₂/G, S@VN/G, S@1VO₂-3VN/G, and S@3VO₂-1VN/G cathodes.

Fig. S19 Rate performance of S@3VO₂-1VN/G cathode at higher current densities of 3 C and 5 C.

Fig. S20 In operando Raman spectra based on bare S@G cathode collected upon the first cycle at

Fig. S21 Cycling performances of S@VO₂/G, S@VN/G, S@1VO₂-3VN/G, and S@3VO₂-1VN/G cathodes at 1 C.

Fig. S22 Cycling performance of S@3VO₂-1VN/G cathode at 5 C.

Fig. S23 Visualized test for suppressed shuttle effect. (a) Examination of the separators from disassembled batteries after 200 cycles at 1 C. (b) Examination of the S@3VO₂-VN and S@G cathodes from disassembled batteries after 200 cycles at 1 C by immersing in 5 mL DME solution for 2 h.

Fig. S24 SEM inspections of cathode before and after cycling. (a-b) SEM images of $S@3VO_2-1VN/G$ cathode a) before and b) after 200 cycles at 1 C. (c-d) SEM images of bare S@G cathode c) before and d) after 200 cycles at 1 C.

Fig. S25 Galvanostatic charge/discharge profiles of S@ $3VO_2$ -1VN/G cathodes with high sulfur loadings. (a-b) Galvanostatic charge/discharge profiles at 0.3 C with a sulfur loading of (a) 2.6 and (b) 4.2 mg cm⁻². (c-d) Galvanostatic charge/discharge profiles at various rates with a sulfur loading of (c) 2.6 and (d) 4.1 mg cm⁻².

Fig. S26 Cycling performance of the S@ $3VO_2$ -1VN/G cathode at 0.1 C with a sulfur loading of 5.1 mg cm⁻².

Fig. 27 SEM image and corresponding elemental characterization of S@ $3VO_2$ -1VN cathode with a sulfur mass loading of 11.4 mg cm⁻².

Fig. S28 Galvanostatic charge/discharge profiles of S@3VO₂-1VN/G cathode at various rates at 50°C.

Table S1 Comparation of battery performances based on sulfur hosts between this work and other
reported studies.

	Mass	S	Current		Initial	Capacity	
Hosts	loading of S	content	density	Cycles	capacity	decay (%	Ref.
	(mg cm ⁻²)	(wt%)	(C)		$(mAh g^{-1})$	per cycle)	
3VO ₂ -1VN	1.6-1.8	61.8	0.2	100	1455	0.23	Thia
			2	800	1010	0.06	work
	4.2	61.8	0.3	50	1125	0.44	
VS ₂	1-2	61	2	100	1185	0.16	1
VO ₂	1.4-2.0	56	0.2	100	1405	0.30	2
VN/C	2.8	57.2	1	200	1200	0.24	3
Co-N-GC	2.0-2.5	49	0.2	100	1440	0.40	4
MCM-Nb ₂ O ₅	~1.5	48	2	500	1200	0.09	5
TiO ₂ /G	3.5	61	0.2	100	1032	0.44	6
TiC/G	3.5	61	0.2	100	1032	0.35	6
Co ₃ O ₄	1.5-2.0	49	1	100	~ 1580	0.59	7
Co ₄ N	1.5-2.0	49	1	100	~1640	0.39	7
MoS ₂	~1.5	60	0.5	100	1033	0.44	8

References

- 1. X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang and Z. Liu, *Adv. Energy Mater.*, 2018, DOI: 10.1002/aenm.201800201.
- 2. Y. Song, W. Zhao, X. Zhu, L. Zhang, Q. Li, F. Ding, Z. Liu and J. Sun, ACS Appl. Mater. & Interfaces, 2018, **10**, 15733-15741.
- 3. X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P. K. Chu and K. Huo, Nano Energy, 2017, 40,

655-662.

- 4. Y. J. Li, J. M. Fan, M. S. Zheng and Q. F. Dong, *Energy Environ. Sci.*, 2016, **9**, 1998-2004.
- 5. Y. Q. Tao, Y. J. Wei, Y. Liu, J. T. Wang, W. M. Qiao, L. C. Ling and D. H. Long, *Energy Environ. Sci.*, 2016, **9**, 3230-3239.
- 6. H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang and Q. Zhang, *Angew. Chem. Int. Ed.*, 2016, **55**, 12990-12995.
- 7. D. R. Deng, F. Xue, Y. J. Jia, J. C. Ye, C. D. Bai, M. S. Zheng and Q. F. Dong, *ACS Nano*, 2017, **11**, 6031-6039.
- H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. W. Zheng and J. Y. Lee, *Energy Environ. Sci.*, 2017, 10, 1476-1486.