## Novel *p*-Dopant Toward Highly Efficient and Stable Perovskite Solar Cells

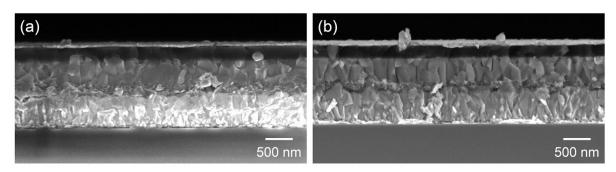
Ji-Youn Seo<sup>1†</sup>, Hui-Seon Kim<sup>2†\*</sup>, Seckin Akin<sup>1,3</sup>, Marko Stojanovic<sup>1</sup>, Elfriede Simon<sup>4</sup>, Maximilian Fleischer<sup>4</sup>, Anders Hagfeldt<sup>2</sup>, Shaik M. Zakeeruddin<sup>1</sup> and Michael Grätzel<sup>1\*</sup>

<sup>1</sup>Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

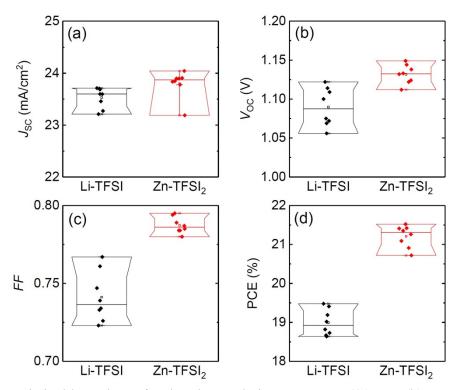
<sup>2</sup>Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

<sup>3</sup>Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey.

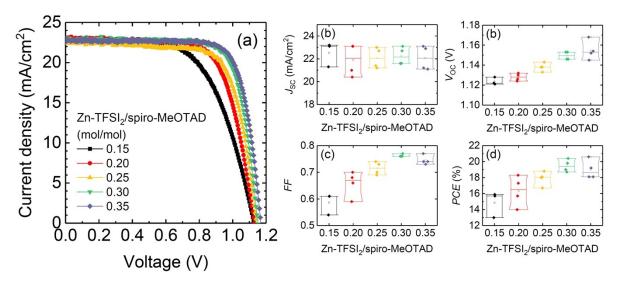
<sup>4</sup>Research in Energy and Electronics, Corporate Technology, Siemens AG, 81739 München, Deutschland.


<sup>†</sup> Both authors contributed equally to this work.

\* Corresponding authors


H.-S.K.: <u>hui-seon.kim@epfl.ch</u> and M. G.: <u>michael.graetzel@epfl.ch</u>




**Figure S1** (a) Current (J)-voltage (V) plot of hole only devices. Cross-sectional SEM images of the hole only devices employing (b) *spiro*-MeOTAD, (c) *spiro*-MeOTAD with Li-TFSI and tBP, and (d) *spiro*-MeOTAD with Zn-TFSI<sub>2</sub> and tBP. Scale bars in (b)-(d) represent 500 nm.



**Figure S2** Cross-sectional scanning electron microscope (SEM) images of devices employing (a) Li-TFSI and (b) Zn-TFSI<sub>2</sub> as a dopant for *spiro*-MeOTAD.



**Figure S3** Statistical box charts for the photovoltaic parameters ((a)  $J_{SC}$ , (b)  $V_{OC}$ , (c) *FF* and (d) PCE) of the devices with respect to the dopant of *spiro*-MeOTAD (black for *spiro*-MeOTAD with Li-TFSI and tBP and red for *spiro*-MeOTAD with Zn-TFSI<sub>2</sub> and tBP). V<sub>d</sub>=400 ms.



**Figure S4** (a) I-V curves of the devices depending on the concentration of Zn-TFSI<sub>2</sub> in comparison to the *spiro*-MeOTAD. Statistical box charts of (b)  $J_{SC}$ , (c)  $V_{OC}$ , (d) *FF* and (e) PCE as a function of the concentration of Zn-TFSI<sub>2</sub>. The additives of tBP and FK209 were also included in the *spiro*-MeOTAD layer. V<sub>d</sub>=500 ms.

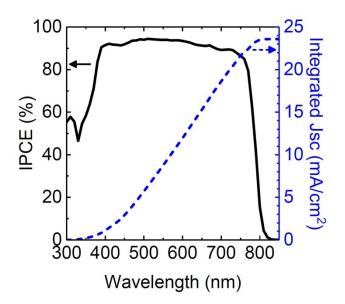
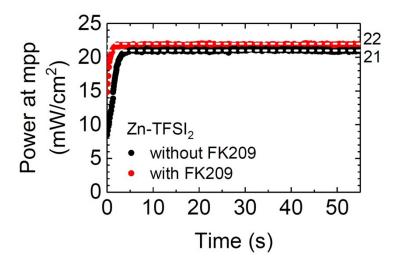
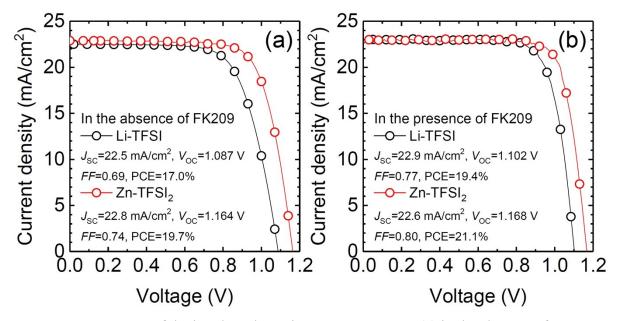
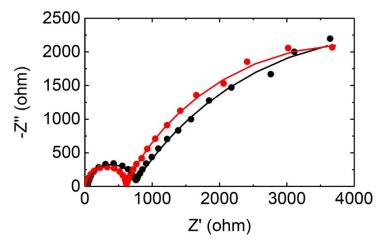
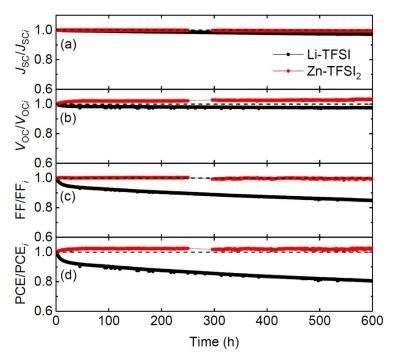
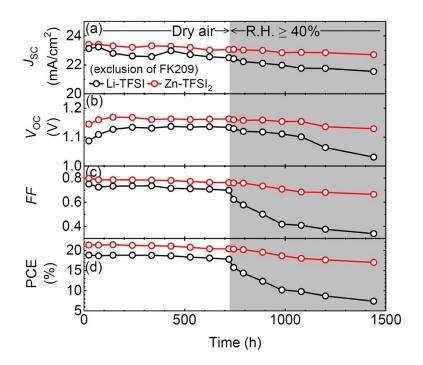



Figure S5 IPCE spectra of the best efficiency device with Zn-TFSI<sub>2</sub> in the presence of FK209.

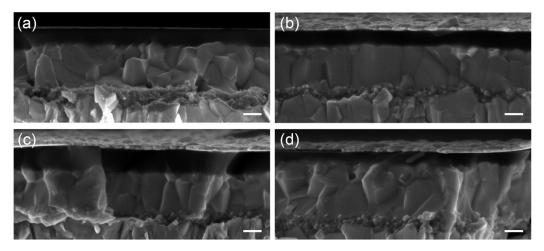






Figure S6 Stabilized power output of devices based on Zn-TFSI<sub>2</sub> with respect to the inclusion of FK209.

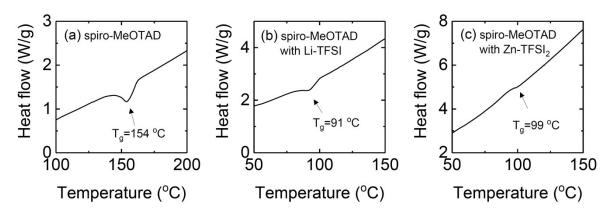



**Figure S7** I-V curves of devices based on Li-TFSI or Zn-TFSI<sub>2</sub> (a) in the absence of FK209 or (b) in the presence of FK209. The I-V curves were recorded in RS.  $V_d$ =500 ms. The devices were prepared and measured in a same manner for comparison. [TFSI-]/[*spiro*-MeOTAD]=0.5 mol/mol.




**Figure S8** Nyquist plots (dots) and fitting curves (line) ( $V_{app}=0.0$  V) of the devices with Li-TFSI (black) and Zn-TFSI<sub>2</sub> (red) as a dopant for *spiro*-MeOTAD.




**Figure S9** Long-term stability of photovoltaic parameters, (a)  $J_{SC}$ , (b)  $V_{OC}$ , (c) FF and (d) PCE, under one sun at 25 °C with respect to the dopant for the *spiro*-MeOTAD in the presence of FK209. Black and red represent Li-TFSI and Zn-TFSI<sub>2</sub>. The devices were maintained at the maximum power point (mpp) under the N<sub>2</sub> atmosphere. The initial values of the device with Li-TFSI were 24.3 mA/cm<sup>2</sup> of  $J_{SCi}$ , 1.126 V of  $V_{OCi}$ , 0.74 of  $FF_i$  and 20.2% of PCE<sub>i</sub> under 0.998 Sun. The initial values of the device with Zn-TFSI<sub>2</sub> were 21.7 mA/cm<sup>2</sup> of  $J_{SCi}$ , 1.082 V of  $V_{OCi}$ , 0.73 of  $FF_i$  and 17.2% of PCE<sub>i</sub> under 0.998 Sun.




**Figure S10** Shelf stability of device employing Li-TFSI or Zn-TFSI<sub>2</sub> in the absence of FK209. The device was stored in dark at room temperature. Photovoltaic parameters of (a)  $J_{SC}$ , (b)  $V_{OC}$ , (c) *FF* and (d) PCE obtained from RS (V<sub>d</sub>=400 ms).



**Figure S11** Cross-sectional scanning electron microscope (SEM) images of devices after longterm stability measurements at mpp under one sun and N<sub>2</sub> atmosphere. Device with (a) Li-TFSI and (b) Zn-TFSI<sub>2</sub> after 600 h at 25 °C. Device with (c) Li-TFSI and (d) Zn-TFSI<sub>2</sub> after 100 h at 50 °C. Scale bars represent 200 nm.



**Figure S12** Differential scanning calorimetry (DSC) curves of (a) pristine *spiro*-MeOTAD, (b) *spiro*-MeOTAD with Li-TFSI, FK209 and tBP, and (c) *spiro*-MeOTAD with Zn-TFSI<sub>2</sub>, FK209 and tBP. The compositional ratio of HTM was exactly same with the one for devices. The DSC curves were obtained from first heating.



**Figure S13** Microscope images (200x magnitude) of *spiro*-MeOTAD with (a) Li-TFSI and (b) Zn-TFSI<sub>2</sub> after the thermal stability test for 100 h at 50 °C.



**Figure S14** X-ray photoelectron spectroscopy (XPS) depth profiling of the device with Li-TFSI after the thermal stability test for 100 h at 50 °C.