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I. ADDITIONAL THEORY AND METHODS
DETAILS

A. Measuring the Steady State Bimolecular
Recombination Kinetics and Mobility

The overall current generated by the solar cell can be
split into two components,

J(V ) = JG(V )− Jbr(V ), (1)

where JG(V ) is the effective generation current and
Jbr(V ) is the bimolecular recombination current. In
the reverse bias saturation regime of the J-V curve, the
charge carrier density is low enough such that the bi-
molecular recombination is negligible, and as a result,
the effective generation current density can be described

JG(V ) = qLG(V ), (2)

where G(V ) is the bias-dependent effective free charge
generation rate. This effective generation rate repre-
sents a complex summation of all first-order mechanisms
including photon absorption, exciton dissociation yield,
charge carrier separation, surface recombination, exciton-
charge annihilation, and charge recombination with in-
jected charges present near the Ohmic contacts. All of
these effects can be accounted for by analyzing the pho-
tocurrent in the saturation regime. For the devices mea-
sured in this study, the saturation photocurrent could be
empirically fit using a simple power law function,

JG(V ) = Jph,sat(V ) = J0 + J1[V0 − V ]p, (3)

where J0, J1, and p are fit parameters. By extrapolat-
ing this fit to zero effective voltage, one can determine
the generation current density at any applied bias from
short-circuit to open-circuit. Subtracting the calculated
generation current from the total measured current, then
yields the bimolecular recombination current.

Jbr(V ) = JG(V )− J(V ). (4)

Alternatively, the bimolecular recombination current
can also be defined,

Jbr(V ) = qLkbr(n, V )n(V )2. (5)

Then, by combining Eqns. 4 and Eqn. 5 the bimolecular
recombination coefficient can be calculated,

kbr(n, V ) =
JG(V )− J(V )

qLn(V )2
, (6)

To determine the effective mobility of the charge car-
riers, we expand on the method developed by Albrecht
et al..1 The current density produced by a solar cell is
dominated by the drift and diffusion current of electrons
and holes traveling though the active layer,1

J = nµe∇EqF,e + pµh∇EqF,h (7)

where n is density of electrons, µe is the electron mobility,
∇EqF,e is the gradient of the quasi Fermi level of the
electrons, p is the hole density, µh is the hole mobility,
and ∇EqF,h is the gradient of the quasi Fermi level of
the holes. At steady state, the electron and hole current
densities must be equal, and assuming equal densities
of electrons and holes (n = p) and approximately equal
charge carrier mobilities (µeff = µe ≈ µh),

J = 2nµeff∇EqF. (8)

The gradient of the quasi Fermi levels can be defined1

∇EqF = q
[Voc − V ]

L
(9)

where q is the elementary charge constant, Voc is the
open-circuit voltage of the solar cell, V is applied bias,
and L is the active layer thickness, which results in the
final form,

J(V ) = 2qnµeff
[Voc − V ]

L
. (10)

However, as discussed previously, both the mobility and
charge carrier density are not constants, and so the ef-
fective mobility is more generally defined,

µeff(n, V ) =
J(V )L

2qn(V )[Voc − V ]
(11)
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B. Measuring the Charge Carrier Density with
Impedance Spectroscopy

Impedance spectroscopy can be used to determine the
charge carrier density in the solar cell under operating
conditions by measuring the chemical capacitance (Cµ)
due to the charge carriers in the active layer as a func-
tion of the internal voltage. The chemical capacitance
of the charge carriers must be calculated from the total
capacitance of the solar cell (Ctot) after subtracting the
capacitance of the depleted device in the dark (Cd).

Cµ = Ctot − Cd (12)

Here, we measure Cd as a function of frequency at V =
-4 or -5 V.

The total capacitance of the solar cell at a given bias
and illumination intensity, after correcting for the series
resistance and parasitic induction of the wires, is calcu-
lated

Ctot = − 1

ω

[
Z”− ωLw

[Z ′ −Rs]2 + [Z”− ωLw]2

]
, (13)

where ω is the angular frequency, Z ′ is the real
impedance, Z” is the imaginary impedance, Lw is the
inductance of the wires, and Rs is the series resistance
due to the wires and connection to the device electrodes.
The angular frequency is related to the regular frequency
(f) by ω = 2πf .

At high frequency, in the dark, and at reverse bias, the
complexities that make equivalent circuit modeling diffi-
cult largely disappear because there are very few charge
carriers in the active layer and any that are present are
unable to respond to the high frequency AC signal. As a
result, the high frequency real impedance (Z ′) resulting
from a simple RC circuit can be used to determine the
series resistance.

Z ′(f ≈ 106 Hz) = Rs (14)

Under the same conditions, the high frequency imaginary
impedance can then be used to determine the parasitic
inductance of the wires (Lw) and the geometric capaci-
tance of the device (Cg) by fitting the following equation

Z”(f ≈ 106 Hz) = ωLw −
1

ωCg
(15)

With this measurement of the geometric capacitance, the
effective dielectric constant of the active layer blend can
then be calculated,

ε =
CgL

ε0A
, (16)

where ε0 is the vacuum permittivity constant.
We now reassess the derivation for the equation used

to calculate the saturation charge carrier density (nsat)
Originally, Proctor et al. used the expression,2

nsat(Vsat) =
1

qAL
Cµ(Vsat) [V0 − Vsat] , (17)

In the original derivation, only the drift current of one
type of carrier was included,2 disregarding the fact that
both charge carrier types contribute to the total current
density and the possible contribution from charge carrier
diffusion. Instead, here we start by using the more com-
plete drift-diffusion current defined in Eqn. 10, In the
saturation regime, Eqns. 10 and 2 can be set equal to
each other and rearranged to give the saturation charge
carrier density.

nsat(V ) =
L2G

2µeff[Voc − V ]
(18)

While we do not know the generation rate or the mobility,
we can measure the capacitance. Given that capacitance
equation is

Cµ(V ) = qAL
dn

dV
, (19)

we can take the derivative of Eqn. 18 to simply the ex-
pression. If G and µeff are independent of the applied
bias,

dnsat(V )

dV
=

L2G

2µeff[Voc − V ]2
(20)

and combining this with Eqn. 18,

dnsat(V )

dV
=

nsat(V )

[Voc − V ]
(21)

Combining this with Eqn. 19, we reach a the general
expression for nsat at a saturation voltage Vsat,

nsat(Vsat) =
1

qAL
Cµ(Vsat) [Voc − Vsat] , (22)

and this equation can then be used to calculate the satu-
ration carrier density at any bias in the reverse saturation
regime. The only difference between the original equation
(Eqn. 17) derived by Proctor et al. is that Voc has been
substituted for V0 due to the addition of the contribution
from the diffusion current. In most cases, Voc ≈ V0, and
this difference will only have a small impact on nsat.

However, if G and µeff are not independent of the ap-
plied bias, then this equation will not be strictly valid.
A more detailed derivation of nsat can take these effects
into account. In this case, the derivative of Eqn. 18 has a
more complex form that can then be simplified to obtain
a more complete expression for nsat.
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First, using the product rule for derivatives,

dnsat(V )

dV
=

[
L2

2[Voc − V ]

]′
G(V )

µeff(V )
+

L2

2[Voc − V ]

[
G(V )

µeff(V )

]′
(23)

Then, using the quotient rule for derivatives,

dnsat(V )

dV
=

[
L2

2[Voc − V ]

]′
G(V )

µeff(V )
+

L2

2[Voc − V ]

[
G(V )′µeff(V )−G(V )µ′eff(V )

µeff(V )2

]
(24)

This then becomes

dnsat(V )

dV
=

L2

2[Voc − V ]2
G(V )

µeff(V )
+

L2

2µeff(V )2[Voc − V ]

[
µeff(V )

dG(V )

dV
−G(V )

dµeff(V )

dV

]
(25)

After simplifying by plugging in Eqn. 18,

dnsat(V )

dV
=

nsat(V )

[Voc − V ]
+

nsat(V )

G(V )µeff(V )

[
µeff(V )

dG(V )

dV
−G(V )

dµeff(V )

dV

]
(26)

Further simplification then leads to

dnsat(V )

dV
=

nsat(V )

[Voc − V ]
+ nsat

[
1

G(V )

dG(V )

dV
− 1

µeff(V )

dµeff(V )

dV

]
(27)

Substituting in the capacitance equation (Eqn. 19), solving for nsat, setting letting V = Vsat finally yields

nsat(Vsat) =
Cµ(Vsat)

qAL

[
1

(Voc − Vsat)
+

1

G(Vsat)

dG

dV
− 1

µeff(Vsat)

dµeff(Vsat)

dV

]−1

(28)

In this equation, the second and third terms in the brackets modify nsat to account for the possibility of a field-
dependent effective charge generation rate or a field-dependent charge carrier mobility, respectively. In the simple
case where these parameters are independent of the applied bias, these two terms are equal to zero and Eqn. 22 is
regained. Since we do not know the effective generation rate, we can modify this equation further given that

G(Vsat) =
JG(Vsat)

qL
(29)

and

dG(Vsat)

dV
=

1

qL

dJG(Vsat)

dV
. (30)

Eqn. 28 can then be re-written as a function of the measured saturation current

nsat(Vsat) =
Csat

qAL

[
1

(Voc − Vsat)
+

1

JG(Vsat)

dJG(Vsat)

dV
− 1

µeff(Vsat)

dµeff(Vsat)

dV

]−1

(31)

C. Measuring Bimolecular Charge Recombination
with the Open-Circuit Voltage Decay Technique

The relationship between the measured Voc and the
charge carrier density in classical semiconductor theory
is

qVoc = Eg + kBT ln

[
np

NeNh

]
, (32)

where Eg is the bandgap of the semiconductor, kB is the
Boltzmann constant, T is the temperature, Ne is the total
density of electron states, and Nh is the total density of
hole states.

In OPVs, the relationship between the measured open-
circuit voltage (Voc) and the charge carrier density has
been shown to depend on the charge transfer state en-
ergy (ECT) and further modified by energetic disorder.
Organic semiconductors are disordered materials and
have a broadened density of states (DOS) with a tail
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that extends into the bandgap, and it has been shown
that the open-circuit voltage is reduced relative to the
charge transfer state energy depending on the nature and
amount of disorder.3,4 If the DOS tail has a Gaussian
shape,

qVoc = ECT −
σ2

kBT
+ kBT ln

[
np

NeNh

]
, (33)

where σ is the standard deviation of the Gaussian DOS.
If the DOS tail has an exponential shape,

qVoc = ECT +mkBT ln

[
np

NeNh

]
. (34)

where

m =
Eu

kBT
(35)

and Eu is the characteristic Urbach energy of the expo-
nential tail.

For a blend with an unknown DOS shape, both the
Gaussian and exponential DOS model equations can be
generalized to the form

Voc = E0 +
mdkBT

q
lnnp. (36)

where E0 is a fit parameter and md is the disorder pref-
actor.

II. ADDITIONAL EXPERIMENTAL DETAILS
AND RESULTS

Figure 1 shows the chemical structures for all of the
polymer donors and fullerene acceptors used in this
study.

In total, 34 devices were tested using the full
impedance-photocurrent device analysis (IPDA) and
open-circuit voltage decay (OCVD) methods. For each
device, detailed information about the materials used,
the fabrication process, the final device dimensions, 1
sun J-V characteristics, and 1 sun results from IPDA
and OCVD measurements can be found in the Supple-
mentary Data spreadsheet that accompanies this docu-
ment. Illumination intensity data can be made available
for further analysis upon request.

For some of the P3HT:PC61BM devices, a slow dry-
ing/solvent vapor annealing process was used. This was
done by spin coating the film for only 10s and then
quickly placing substrate with the still wet film into an
empty covered glass petri dish for 10 min. Once in the
covered petri dish, the film continued to dry and the sol-
vent vapor populated the atmosphere of the petri dish,
thereby increasing the partial pressure of the environ-
ment and slowing down the evaporation of the solvent
from the film. After the 10 min slow drying step, the
films were exposed to the N2 glovebox environment and
allowed to complete drying for 1 hr.
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FIG. 1. Chemical structures of the polymer donors (P3HT, PTB7, PTB7-Th, PPDT2FBT, PIPCP) and the fullerene acceptors
(PC61BM, PC71BM).


