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A Details of Supplementary Videos

The videos each show simulation results for a current-voltage (J-V) scan of a three-layer perovskite solar
cell after 4 seconds preconditioning at an applied voltage of 1.2 V. The top two panels show the evolution
of the electric potential (black, left axes), ion vacancy density (magenta, right axis) and carrier densities
(blue for electrons, red for holes, right axis, logarithmic) during the scan, while the bottom two panels
simultaneously trace out the reverse and then forward scan of current density and the electric field at
the midpoint of the perovskite versus voltage.

Video S1: Simulation results for a 0.75 V/s J-V scan of a PSC described by the parameters in Tables
1 and 2(a) of the main text except that the ion diffusivity DI = 10−16m2s−1.

Video S2: Equivalent to S1 but for the recombination parameters in Table 2(b) of the main text.

Video S3: Simulation results for a 1.78 V/s J-V scan of a PSC described by the parameters in Tables
1 and 2(a) of the main text except for the high doping densities of dE = dH = 5× 1025 m−3 and the ion
diffusivity DI = 10−16m2s−1.

Video S4: Equivalent to S3 but for the low doping densities of dE = dH = 5× 1023 m−3, i.e. it is an
animation corresponding to Figure 5(c) in the main text.

Videos S5 and S6: Equivalent to S3 and S4, respectively, but for the recombination parameters in
Table 2(b) of the main text.

B Calculation of Current Density from Simplified DD Model

Following on from Section 3.5 of the main text, the J-V characteristics of a cell may be obtained from
the surface polarisation model via solution of the following DD model for the charge carriers based upon
the known internal electric potential. Here we follow the same procedure used previously (in approach
(ii)) by Courtier et al.1

In order to calculate the total current J(t), we consider the conservation equations for the electron
and hole densities (n and p) in the perovskite layer (0 < x < b), given by equations (1)-(2) in the main
text. However, as in Courtier et al.1, we consider only the solution for the carriers (and the associated
current densities) in the perovskite bulk, and do not solve explicitly in the very narrow Debye layers at

aMathematical Sciences, University of Southampton, SO17 1BJ, UK.
bDepartment of Physics, University of Bath, BA2 7AY, UK.
cDepartment of Mathematics, University of Portsmouth, PO1 3HF, UK.

1

Electronic Supplementary Material (ESI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2018



the interfaces with the ETL (on x = 0) and HTL (on x = b). The electron and hole densities in the
bulk, which we denote by n̄ and p̄ respectively, and the electron and hole currents in the bulk, which
we denote by j̄n and j̄p are well approximated by equations (1)-(2) in the main text in which −∂φ∂x is
replaced by the known bulk electric field Ebulk(t), calculated from the surface polarisation model; that
is they satisfy
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Assuming that the carrier transport is fast in comparison to the timescale of ion vacancy motion, it is
approximately true that the carriers are in a quasi-steady state, i.e.
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These equations are supplemented by boundary conditions near to each interface which are calculated
by assuming approximate thermal equilibrium of the carrier densities across the narrow Debye layers
(which extend into the TLs) and substituting into the continuity and boundary conditions (10)-(12) (of
the main text); they are

n̄|x=0+ = dEkEe−(V1+V2)/VT , j̄p|x=0+ = −qRl
(
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)
, (5)

p̄|x=b− = dHkHe−(V3+V4)/VT , j̄n|x=b− = −qRr
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It follows from (1a) and (2a) that

∂

∂x
(j̄p + j̄n) = 0, so that j̄p + j̄n = J(t), (7)

where J(t) is the total current density flowing across the cell. This means that, for a known electric
field Ebulk(t), the value of J(t) can be approximated at any point x in the domain from the numerical
solution, using a solver such as MATLAB’s bvp4c2, of the boundary value problem (3)-(6) for n̄ and p̄.

C Extension of Numerical Scheme

Here, we follow the non-dimensional notation defined and used in Courtier et al.3. We introduce super-
scripts of E or H to denote the corresponding variables in the ETL or HTL, respectively.

C.1 Computational Grid

The complete computational grid is made up of three sub-grids; one for each of the three material
layers. The equations in the perovskite layer are discretised onto N+1 grid points, denoted by x = xi for
i = 0, ..., N , which partition the domain x ∈ [0, 1] into N subintervals. To ensure that computational
effort is expended where it is needed most (in the Debye layers) we position the grid points according to
a Chebyshev distribution as follows.
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Similar grids are introduced for treatment of the equations in the TLs and these are defined by
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The values of NE and NH are chosen to give approximately equal spacing either side of the interfaces.
For the results presented in this paper, we use N = 400, and hence NE = 200 and NH = 283. For each
of the three sub-grids we introduce a set of half-points which lie midway between the grid points. As
such we write

xi+1/2 =
xi+1 + xi

2
, for i = 0, ..., N − 1, (11)

for the perovskite layer, with equivalent definitions for the TLs.

C.2 Discretisation of Transport Layer Equations and Continuity Conditions

Within the ETL, the governing equations ensuring the conservation of electrons and Poisson’s equation
for the electric potential, along with the corresponding left-hand boundary conditions (i.e. those at the
contact) are discretised in a precisely analogous way to those given in Courtier et al.3. We do likewise
for the equations stating conservation of holes, Poisson’s equation and right-hand boundary conditions
in the HTL. In the interests of brevity, we do not reiterate the discretised system here and instead refer
the interested reader to the relevant previous work.3

In order to preserve the second-order accuracy of the spatial discretisation achieved in our previous
work3, it is important to choose discretisations for the additional continuity conditions, introduced by
the inclusion of the TLs, that also exhibit second order accuracy. Finding such discrete approximations
is trivial for the conditions on the continuity of the potential and the prescribed ratios between carrier
densities on either side of the respective interfaces. However, the electric field (E) and carrier currents
(jn, jp) are only defined on the half-points (i.e. not directly on the interface where the conditions are to
be applied) as follows
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for i = 0, ..., N − 1 and in which κn and κp are non-dimensional constants proportional to the rele-
vant carrier diffusion coefficient. Definitions for the calligraphic operators can be found in Courtier et
al.3. Equivalent expressions for the electric field and appropriate carrier current in each TL follow from
identical considerations. The location of the half-points (away from the interfaces) necessitates extrap-
olating the relevant quantities, namely the electric field and carrier currents, to the interfaces at which
the boundary conditions must be applied. Our extrapolation is linear and based on the values of the
variables at the two nearest half-points. Hence, we apply the following set of 8 continuity conditions.

At the ETL/perovskite interface at x = 0,
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Similarly, at the perovskite/HTL interface,
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