Supporting Information

Al³⁺ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with high optical modulation, quick response and long cycle life

Shengliang Zhang,^{ab} Sheng Cao,^{ab} Tianran Zhang,^{ab} Adrian Fisher^{bc} and Jim Yang Lee*^{ab}

^a Department of Chemical and Biomolecular Engineering, National University of Singapore,

10 Kent Ridge Crescent, Singapore 119260, Singapore. Email: cheleejy@nus.edu.sg

^b Cambridge Centre for Advanced Research and Education in Singapore, 1 Create Way, 138602, Singapore.

^c Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom. **Supplementary Figures and Table**

Fig. S1 (a) XRD patterns of W18O49 NWs and the monoclinic W18O49 reference (ICSD #05-

0392). (b) TEM image of $W_{18}O_{49}$ NWs.

Fig. S2 Galvanostatic discharge/charge curves of the m-WO_{3-x} NW film at a current density of 0.5 mA cm⁻² between $0.7 \sim -0.9$ V (vs Ag⁺/Ag) (black trace) and the corresponding changes of the transmittance at 633 nm measured in-situ (blue trace).

Fig. S3 The Al 2p XPS spectrum of $c-Al_yWO_{3-x}NW$ film at -0.9 V.

Table S1. The detailed binding energy and ratio of W^{6+} , W^{5+} and W^{4+} in m-WO_{3-x} (pristine),

Sample	W ⁶⁺		W ⁵⁺		W ⁴⁺		W ⁵⁺ /W ⁶⁺	W ⁴⁺ /W ⁵⁺
	W _{7/2}	W _{5/2}	W _{7/2}	W _{5/2}	W _{7/2}	W _{5/2}	-	/W ⁶⁺
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)		
m-WO _{3-x}	36.0	38.15	35.1	37.25			0.2	
(pristine)								
t-Al _y WO _{3-x}	35.65	37.8	35.0	37.15			0.5	
(-0.5V)								
c-Al _y WO _{3-x}	35.58	37.73	34.9	37.05	33.40	35.55		0.43/0.81/1
(-0.9V)								

t-Al _v WO _{3-x}	(-0.5V)	and c-Al,	WO _{3-x}	(-0.9V)
-------------------------------------	---------	-----------	-------------------	---------

Fig. S4 (a) Cyclic voltammograms of Al³⁺ intercalation/de-intercalation of a m-WO_{3-x} NW film at different scan rates. (b) The cathodic peak current as a function of the square root of scaning rate.

Fig. S5 (a) Cyclic voltammograms of of Li^+ intercalation/de-intercalation of a m-WO_{3-x} NW film at different scan rates. (b) The cathodic peak current as a function of the square root of

scaning rate.

Fig. S6 Discharge/charge curves of m-WO_{3-x} NW film at a current density of 20 mA g⁻¹ in the 4-2 V (vs Li⁺/Li) window using Li metal as counter and reference electrodes, 0.5 M Li-TFSI/tetraglyme as electrolyte.

Fig. S7 (a) SEM image and (b) optical performance of m-WO_{3-x} NW film after 2000 voltammetric cycles.