Electronic Supplementary Information (ESI)

In-situ growth of Cu(OH)₂@FeOOH nanotubes arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy storage devices

Jin-Qi Xie,^{ab} Ya-Qiang Ji,^a Jia-Hui Kang,^a Jia-Li Sheng,^a Da-Sha Mao,^{ab} Xian-Zhu Fu,^{*ac} Rong Sun^a and Ching-Ping Wong^{de}

^a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

^b Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China.

^c College of Materials Science and Engineering, Shenzhen University, Shenzhen
518055, China.

^d Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, China.

^e School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

*E-mail: xz.fu@szu.edu.cn

Fig. S1 Surface SEM images of (a) PTFE, (b) cotton cloth and (c) waste paper. Digital photos of electroless deposited copper patterns on (d) PTFE, (e) cotton cloth and (f) waste paper. Surface SEM images of the electroless deposited copper on (g) PTFE, (h) cotton cloth and (i) waste paper.

Fig. S2 Surface SEM images of Cu coatings on PI (filled in epoxy resin) at ECD time of (a) 5 min, (b) 10 min, (c) 15 min and (d) 30 min.

Fig. S3 The variation of the surface resistivity of Cu coating with ECD time.

Fig. S4 Cross-sectional SEM images of Cu coatings on PI (filled in epoxy resin) at ECD time of (a) 1h, (b) 1.5h, (c) 3h and (d) 6h.

Fig. S5 (a) digital image, (b) Cross-sectional SEM image and (c-e) surface SEM images of the PI substrate.

Fig. S6 Contact angles between water and PI substrates (a) before and (b) after surface modification.

Fig. S7 Surface SEM images of interdigital electrodes: (a) Cu/PI and (b) Cu(OH)₂@FeOOH NTs array /Cu/PI.

Fig. S8 XRD patterns of the electroless deposited cooper before and after stability test.

Fig. S9 Cross-sectional SEM image of the Cu(OH)2@FeOOH NTs array/Cu electrode.

Fig. S10 (a) Digital photo, (c-d) SEM images and (d) TEM image of $Cu(OH)_2$. (e) Digital photo, (f-g) SEM images and (h) TEM image of $Cu(OH)_2$ @FeOOH-1. (i) Digital photo, (j-k) SEM images and (l) TEM image of $Cu(OH)_2$ @FeOOH-2. (m) Digital photo, (n-o) SEM images and (p) TEM image of $Cu(OH)_2$ @FeOOH-3. (q) Digital photo, (r-s) SEM images and (t) TEM image of $Cu(OH)_2$ @FeOOH-4.

Fig. S11 (a) Cross-sectional SEM image and (b-d) SEM-EDS mapping of the Cu(OH)2@FeOOH NTs array.

Fig. S12 Digital images of the as-fabricated interdigitated electrodes: (a) Cu/PI, (b) Cu(OH)₂ NWs array/Cu/PI and (c) Cu(OH)₂@FeOOH NTs array/Cu/PI.

Fig. S13 HRTEM images of (a) Cu(OH)₂ NWs and (b) FeOOH nanosheet.

Fig. S14 Structure illustration of the Cu(OH)₂ NWs and Cu(OH)₂@FeOOH NTs.

Fig. S15 The survey XPS spectra of the $Cu(OH)_2$ NWs and the $Cu(OH)_2$ @FeOOH NTs.

Fig. S16 EDS spectra of (a) $Cu(OH)_2$ @FeOOH-1 (b) $Cu(OH)_2$ @FeOOH-2, (c) $Cu(OH)_2$ @FeOOH-3 and (d) $Cu(OH)_2$ @FeOOH-4.

Fig. S17 GCD curves of MSCs fabricated by Cu electrodes immersed in NaOH&(NH_4)₂SO₃ aqueous solution with different immersing time at 0.2 mA cm⁻².

Fig. S18 Sectional SEM images of $Cu(OH)_2$ NWs array with immersing time at (a) 1 minute, (b) 2 minutes, (c) 3 minutes, (d) 4 minutes, (e) 5 minutes and (f) 6 minutes. (g, h) Surface SEM images of the structure with immersing time at 9 minutes.

Fig. S19 GCD curves of MSCs fabricated by $Cu(OH)_2/Cu$ electrodes immersed in FeCl₂ aqueous solution with different immersing time at 0.2 mA cm⁻².

Fig. S20 The N₂ adsorption and desorption isotherms of Cu(OH)₂, Cu(OH)₂@FeOOH-1, Cu(OH)₂@FeOOH-2, Cu(OH)₂@FeOOH-3 and Cu(OH)₂@FeOOH-4.

Fig. S21 Contact angles between the electrolyte and (a) Cu, (b) Cu(OH)₂, (c) Cu(OH)₂@FeOOH-1, (d) Cu(OH)₂@FeOOH-2, (e) Cu(OH)₂@FeOOH-3 and (f) Cu(OH)₂@FeOOH-4.

Fig. S22 EIS curves of MSCs fabricated by different electrodes.

Current collector	Patterning	active	Synthesis/loading mehod	Areal	Areal energy
	technique	materials		capacitance	density (µWh
				(mF cm-2)	cm-2)
3D graphene ¹	Laser cutting	3D graphene	Chemical vapor deposition	~10 (5mVs ⁻¹)	0.38
	and milling				
Au/Ag ink ²	Ink-jet	Ni@MnO2	Electrodeposition	52.7 (5mVs ⁻¹)	3.88*
	printing;	nanocoral		43.7 (0.54mA cm ⁻	
	magnetron			2)	
	sputtering				
Carbon ³	Spin coating;	MoS2	Hydrothermal	13.7 (0.1 mA cm ⁻	1.9
	photolithogra	nanosheets	synthesis/spin coating;	2)	
	phy	@rGO-CNTs			
Au ⁴	Photolithogra	PPy film	Electrodeposition	47.42 (0.1mA cm ⁻	4.0
	phy and			2)	
	magnetron				
	sputtering				
Au ⁵	Magnetron	MnO2	Electrodeposition	$11.9 (0.5 \text{mA cm}^{-2})$	1.05*
	sputtering				
	via a printed				
	mask				
Au ⁶	Magnetron	rGO-	Solution-based reaction	84.7 (T ^a =58 μm;	13.1
	sputtering	PEDOT/PSS	/bar-coating	5mVs ⁻¹)	
	Laser etching			26.7 (T=12 μm;	
				5mVs ⁻¹)	
Ag nanowires ink ⁷	Ink-jet	Active	Ink-jet printing	$\sim 20 (0.2 \text{mA cm}^{-1})$	11.1*
	printing;	carbon/carbon		2)*	
		nanotubes			
PPy NWs ⁸	Electrodeposit	PPy NWs	Electrodeposition	$\sim 11 (0.2 \text{mA cm}^{-2})$	0.38*
	ion on				
	customized				
	fluorine-				
	doped tin				
21.0	oxide pattern		TT 1 4 1		0.51*
N1 ⁹	Electroless Ni	rGO	Hydrothermal	$8.19 (10 \text{ SmVs}^{-1})$	0.51*
	deposition via		synthesis/spontaneous	$5.75 (0.1 \text{m A cm}^{-1})$	
	a laser-etched		assembly	-)	
	mask (Kapton				
	tape)				

Table S1. Comparison of current collector, patterning technology, active materials, synthesis method and electrochemical performances of various MSCs.

3D porous	Laser etching	3D porous	freeze-casting assisted	2.47 (5mVs ⁻¹)	0.22
graphene ¹⁰		graphene	filtration assembly		
			method		
Ni 11	Screen	MnO2; PPy	electrodeposition	25.8 (0.3m A cm ⁻	8.05
	printing,			2)	
	Electroless Ni				
	deposition and				
	Electroplating				
	Ni				
rGO/Au ¹²	Laser writing	rGO/Au	Laser writing on	3.84 (1V s ⁻¹)	0.53
	on		GO/HAuCl4 mixture		
	GO/HAuCl4				
	mixture				
MXenes (Ti3C2Tx)	Patterned by a	MXenes	Solution-based reaction	15.25 (0.025 mA	0.63
13	3D-printed			cm ⁻²)*	
	stamp.			12.5 (0.8 m A cm ⁻	
				²)*	
Ti/Au ¹⁴	vacuum	VOx/rGO;	Inks preparation:	207.9 (T=412 μm)	73.9
	evaporation	graphene-	GO (Hummer's method);		
	with a	vanadium	V ₂ O ₅ (hydrothermal		
	shadow	nitride quantum	synthesis);		
	mask	dots/rGO	Graphene-vanadium nitride		
			quantum dots (hydrothermal		
			synthesis).		
			Loading method:		
			3D printing.		
Cu (This work)	Screening	CuOH@FeOO	In situ conversion (solution	58.0 (0.1 mA cm ⁻	18.07
	printing and	H nanotubes	immersion at room	2)	
	Electroless		temperature)		
	cooper				
	deposition				

^a T: thickness of the active material.

* Calculated based on the dimensions given in reference if specific results were not given in literature.

Calculations:

The calculations of the areal capacitance (C_A) and the volumetric capacitance (C_V) based on discharging profiles were derived by the following equations:

$$C_{device} = \frac{It}{U} \tag{S1}$$

$$C_A = \frac{C_{device}}{A} \tag{S2}$$

$$Cv = \frac{C_A}{d}$$
(S3)

where v is the scanning rate, U is the voltage window, I is the discharging current, t is the discharging time and A is the area of the MSC, d is the thickness of the device including thickness of both the active materials and the current collector.

The areal energy density (E_A) and power density (P_A) of the MSC were respectively calculated by the following equations:

$$E_A = \frac{1}{2} \times C_A \times \frac{U^2}{3600} \tag{S4}$$

$$E_V = \frac{1}{2} \times C_V \times \frac{U^2}{3600} \tag{S5}$$

$$P_A = \frac{3600 \times E_A}{t} \tag{S6}$$

$$P_V = \frac{3600 \times E_V}{t} \tag{S7}$$

References

- L. Zhang, D. DeArmond, N. T. Alvarez, R. Malik, N. Oslin, C. McConnell, P. K. Adusei, Y. Y. Hsieh and V. Shanov, *Small*, 2017, 13.
- 2. Y. J. Lin, Y. Gao and Z. Y. Fan, *Adv Mater*, 2017, 29.
- W. Yang, L. He, X. C. Tian, M. Y. Yan, H. Yuan, X. B. Liao, J. S. Meng, Z. M. Hao and L. Q. Mai, *Small*, 2017, 13.
- 4. L. Li, C. W. Fu, Z. Lou, S. Chen, W. Han, K. Jiang, D. Chen and G. Z. Shen, *Nano Energy*, 2017, **41**, 261-268.
- 5. H. B. Hu, Z. B. Pei, H. J. Fan and C. H. Ye, *Small*, 2016, **12**, 3059-3069.

- Y. Q. Liu, B. Weng, Q. Xu, Y. Y. Hou, C. Zhao, S. Beirne, K. W. Shu, R. Jalili, G. G. Wallace, J. M. Razal and J. Chen, *Adv Mater Technol-Us*, 2016, 1.
- 7. K. H. Choi, J. Yoo, C. K. Lee and S. Y. Lee, *Energ Environ Sci*, 2016, 9, 2812-2821.
- M. S. Zhu, Y. Huang, Y. Huang, H. F. Li, Z. F. Wang, Z. X. Pei, Q. Xue, H. Y. Geng and C. Y. Zhi, *Adv Mater*, 2017, 29.
- X. Pu, M. M. Liu, L. X. Li, S. C. Han, X. L. Li, C. Y. Jiang, C. H. Du, J. J. Luo, W. G. Hu and Z. L. Wang, *Adv Energy Mater*, 2016, 6.
- Y. L. Shao, J. M. Li, Y. G. Li, H. Z. Wang, Q. H. Zhang and R. B. Kaner, *Mater Horiz*, 2017, 4, 1145-1150.
- R. S. Guo, J. T. Chen, B. J. Yang, L. Y. Liu, L. J. Su, B. S. Shen and X. B. Yan, *Adv Funct Mater*, 2017, 27.
- 12. R. Z. Li, R. Peng, K. D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng and A. Hu, *Energ Environ Sci*, 2016, **9**, 1458-1467.
- C. F. Zhang, M. P. Kremer, A. Seral-Ascaso, S. H. Park, N. McEvoy, B. Anasori, Y. Gogotsi and V. Nicolosi, *Adv Funct Mater*, 2018, 28.
- 14. K. Shen, J. Ding and S. Yang, Adv Energy Mater, 2018, DOI: 10.1002/aenm.201800408.