Supporting Information

Table S1: A summary of recent hydrogen production costs via SMR available in the literature. All costs have been converted to 2016 USD using the CEPCI.

Study	Year of Study	Capital Cost Million \$ ^b	Plant Size	Natural Gas Price \$ GJ ⁻¹	Hydrogen Cost \$ kg ⁻¹ H ₂ (\$ GJ ⁻¹)ª
National Research Council [1] (current)	2004	555.5	1,200 tpd H_2	5.22	1.26 (8.89)
National Research Council [1] (future)	2004	400.5	1,200 tpd H_2	5.22	1.33 (7.94)
NREL [2]	2009	208.9	$379 \text{ tpd } H_2$	7.47	1.54 (10.84)
NREL [3]	2013	22.5	$379 \text{ tpd } H_2$	6.68	2.03 (14.3)
Molburg et al. [4]	2003	100.5	120.5 tpd H_2	3.3	1.12 (7.88)
<i>Mueller-Langer</i> et al. [5] (current)	2007	191.8	298.8 tpd H_2^c	6.9	1.56 (10.99)
<i>Mueller-Langer</i> et al. [5] (future)	2007	181.3	298.8 tpd H_2^c	8.31	1.83 (12.91)
<i>Ewan</i> et al. <i>[</i> 6]	2005	72.42	150 tpd H_2	4.54	1.14 (8.00)
Hosseini et al. [7]	2016				1.03 (7.25)
Salkuyeh et al. [8]	2017	241	446 tpd H ₂	2.65	1.07 (7.54)
IEAGHG [9]	2017	212	215.9 tpd H_2	7.44	1.57 (11.08)
Muradov [10]	2000	*	87 tpd H ₂	3.25	1.24 (8.70)
Keipi et al. [11]	2018	165.9	208.8 tpd H ₂	4.47	2.16 (15.19)

 * Data not provided in the study a Based on a HHV of 142 MJ kg^{-1}H_{2}

b Euro to USD exchange rate of \$1.24 €⁻¹ c Based on 0.083 kgH₂ m⁻³H₂

Figure S1: Hydrogen cost (2016 USD kg⁻¹H₂) as a function of natural gas price (2016 USD GJ⁻¹) reported in the literature summarized in Table S1.

Table S2:A summary of recent hydrogen production costs via SMR with CCS available in the literature. All costs have been converted to 2016 USD using the CEPCI.

Study	Year of Study	Hydrogen Cost \$ kg⁻¹H₂ (\$ GJ⁻¹) ^g	Carbon Avoidance Cost (\$ t ⁻ ¹CO ₂)	Included T&S Cost (\$ t ⁻¹ CO ₂)	Capture Rate
National Research Council [1] (current)	2004	1.49 (10.48)	30.13	*	85%
National Research Council [1] (future)	2004	1.24 (8.76)	16.39	*	86%
<i>Molburg</i> et al. [4]	2003	1.51 (10.63)	9.432	*	*
<i>Mueller- Langer</i> et al. [5] (current)	2007	1.82 (12.78)	32.98	15.34 ª	70% ^b
Mueller- Langer et al. [5] (future)	2007	2.02 (14.19)	23.4	8.95ª	70% ^b
<i>Ewan</i> et al. [6]	2005	1.82 (12.83)	65.9	6.9 °	*
<i>Hosseini</i> et al. [7]	2016	1.22 (8.59)	*	*	*
<i>Salkuyeh</i> et al. [8]	2017	2.16 (15.21)	136.25	*	90%
IEAGHG [9]	2017	2.28 (16.03)	96.15	12.4	90%
Muradov [10]	2000	1.71 (12.04)	*	*	80%
<i>Keipi</i> et al. [11]	2018	2.81 (19.77)	103.92	*	60%
Collodi [12]	2009	*	39.9-46.3	*	60%
Collodi [12]	2009	*	55.3-56.9	*	90%
Bonaquist [13]	2010	*	40-50 ^d	*	50%
Lemus et al. [14]	2010	*	50 ^e	*	50% d

Meerman et al. [15]	2012	f	48 ^g	*	61%
------------------------	------	---	-----------------	---	-----

* Not included in the study

a Specifically to cover a transport distance of 100km per pipeline and injection into a saline aquifer

- b 85% of syngas stream
- c $3.45 t^{-1}CO_2$ compressed and 3 per 100 km of pipeline, no storage included
- d Allowance required to trigger investment in 50% capture
- e Refers to a carbon tax required for economic capture of 50%
- g For production costs within €5-9 GJ⁻¹, CCS increases H_2 production costs by 15-28%
- f Uncertainty range of \$43-78 $t^{1}CO_{2}$ for 61% capture
- g Based on a HHV of 142 MJ $kg^{\mbox{--}1}H_2$

Table S3: A summary of recent hydrogen production costs via coal gasification available in the literature. All costs have been converted to 2016 USD using the CEPCI.

Study	Year of Study	Capital Cost million\$	Plant Size	Feedstock Price \$ GJ ^{.1}	Hydrogen Cost \$ kg⁻¹H₂ (\$ GJ⁻¹)ª
National Research Council [1] (current)	2004	1442.6	1,200 tpd H ₂	1.42	1.17 (8.24)
National Research Council [1] (future)	2004	1090.5	1,200 tpd H ₂	1.42	0.87 (6.10)
Kreutz et al. [16]	2002	1173.5	770.7 tpd H_2	1.73	1.18 (8.29)
Rutkowski [17]	2005	504.3	255.4 tpd H_2	1.33	1.55 (10.92)
<i>Mueller- Langer</i> et al. [5] (current)	2007	480	298.8 tpd H ₂ ^b	2.6	1.56 (10.99)
<i>Mueller- Langer</i> et al. [5] (future)	2007	441.7	298.8 tpd H ₂	2.73	1.52 (10.74)
Ewan et al. [6]	2005	286.3	150 tpd H_2	1.43	1.55 (10.92)
Gray and Tomlinson [18]	2002	510.4	309.5	1.33	1.41 (9.99)

a Based on a HHV of 142 MJ.kg-1.H2

b A Euro to USD exchange rate of \$1.24 per €

Table S4: A summary of recent hydrogen production costs via coal gasification with CCS available in the literature. All costs have been converted to 2016 USD using the CEPCI

Study	Year of Study	Hydrogen Cost \$ kg ⁻¹ .H ₂ (\$ GJ ⁻¹) ^{a, b}	Carbon Avoidance Cost (\$ t ⁻¹ CO ₂)	Included T&S Cost (\$ t ⁻¹ CO ₂)	Capture Rate
National Research Council [1] (current)	2004	1.45 (10.22)	17.81	12.19	90%
National Research Council [1] (future)	2004	1.32 (9.28)	17.63	12.19	90%
NREL [2]	2009	2.37 (16.70)	*	*	*
Davison et al. [19]	2009	2.25 (15.88) ^c	*	*	85%
<i>Mueller-Langer</i> et al. [5] (current)	2007	2.2 (15.47)	25.19	15.34 ^d	92%
<i>Mueller-Langer</i> et al. [5] (future)	2007	2 (14.06)	18.41	8.95 ^d	92%
Mueller-Langer et al. [5] (advanced coal current)	2007	1.91 (13.42)	17.26	15.34	92%
Mueller-Langer et al. [5] (advanced coal future)	2007	1.58 (11.12)	15.47	8.95	92%
Ewan et al. [6]	2005	3.6 (25.37)	*	*	*
Kreutz et al. [16]	2002	1.40 (9.87)	15.34	6.85	91.7%
NREL [3]	2013	2.12 (14.96)	*	*	*
Gray and Tomlinson [18]	2002	1.70 (11.96)	*	13.9	87%
IEAGHG [20]	2014	2.28 (16.10)	е	11.84	90.1%

a Based on a HHV of 142 MJ kg⁻¹H₂

b A Euro to USD exchange rate of \$1.24 per €

c Reported CAC is not shown here due to avoided burden allocation across hydrogen and power generation

d Specifically to cover a transport distance of 100km per pipeline and injection into a saline aquifer e No CAC specified in the study, reasoning given to avoided burden allocation

Table S5: A summary of recent hydrogen production costs via biomass gasification available in the literature. All costs have been converted to 2016 USD using the CEPCI

Study	Year	Capital Cost	Plant Size	Fuel Cost (\$ GJ ⁻¹ dry) ª	LCOH \$ kg ⁻¹ H ₂ (\$ GJ ⁻¹) ^b
NREL [2]	2009	186.7	155.2 tpd.H ₂	4.6	2.28 (16.05)
NREL [2]	2009	178.9	155.2 tpd.H ₂	2.6	1.86 (13.12)
Miller et al. [21]	2017	103.7	50 tpd.H ₂	4.58	2.31 (16.25)
Yao et al. [22] °	2016	12.3	$2.16 \text{ tpd}.\text{H}_2$	36	7.43 (52.36)
Yao et al. [22] °	2016	15	$2.16 \text{ tpd}.\text{H}_2$	9.6	7.24 (50.98)
IEA [23]	2007	*	*	3.1	3 (21.14)
National Research Council [1] (current)	2013	115.5	24 tpd. H_2	2.7	2.20 (15.47)
National Research Council [1] (future)	2013	56.3	24 tpd.H ₂	1.8	1.57 (11.03)
<i>Mueller-Langer</i> et al. [5] (current)	2007	536	113.5 ^c tpd.H₂	5.5	2.18 (15.34)
<i>Mueller-Langer</i> et al. [5] (future)	2007	415.4	113.5 [°] tpd.H₂	4.9	1.85 (13.04)
National Research Council [1] (Biomass Gassification + CCS current)	2013	118.3	24 tpd.H ₂	2.7	2.27 (16.00) ^d
National Research Council [1] (Biomass Gassification + CCS future)	2013	57.8	24 tpd.H ₂	1.8	1.63 (11.50) ^d

a Based on a HHV of 20 MJ kg⁻¹ dry biomass, inclusive of planting, fertilization and truck transportation unless otherwise specified

b Based on a HHV of 142 MJ kg $^{1}\mathrm{H}_{2}$

c Study has been removed from the cost estimate due to very small production volumes

d Specific capture rate of 70%, CAC and transport and storage costs not specified.

Table S6: A summary of recent hydrogen production costs via methane pyrolysis available in the literature. All costs have been converted to 2016 USD using the CEPCI

Study	Year	Capital Cost	Plant Size	Fuel Cost (\$ GJ ⁻¹)	Carbon Value (\$ t ⁻¹)	LCOH \$ kg ⁻ ¹ H ₂ (\$ GJ ⁻¹) a
<i>Mondal</i> et al. [24]	2010	286.2	196.5	0.7	0	1.96 (13.85)
<i>Keipi</i> et al. [11]	2018	5.21	2.16	6.88	0	3.52 (24.79)
<i>Keipi</i> et al. [11]	2018	5.21	2.16	6.88	248	2.45 (17.22)
Muradov [10]	2000	27.49	83	3.26	100	1.03 (7.25)
Muradov [10]	2000	27.49	83	3.26	0	1.44 (10.15)
Parkinson et al. [25]	2017	575 ^b	547	4	200	1.62 (11.42)
Nikolaidis et al. [26]	1992	*	*	*	*	2.4 (16.93)
Steinberg et al. [27]	1989	*	*	4.61	С	1.62 (11.42)
Parkinson et al. [28]	2018	349	274	4	150	1.39 (9.79)
Spath et al. [29]	2000	164.1	152.9	5.11	300	1.46 (10.31)
Spath et al. [29]	2000	164.1	152.9	5.11	100	2.37 (16.71)

a Based on a HHV of 142 MJ kg $^{-1}\text{H}_2$ b Capital cost range of \$564-592 million USD depending on heat source configuration

c Carbon product credited but no actual figure provided

Table S7: A summary of recent hydrogen production costs via wind, solar and nuclear electrolysis. All hydrogen production costs have been converted to 2016 USD using the CEPCI. Individual item costs have not been escalated and are presented as original costs reported in each individual study.

Study	Туре	Year	Capital Cost	LCOH \$ kg ⁻¹ .H ₂ (\$ GJ ⁻¹) ª	Specified Parameters /Comments
Bockris et al. [30]	Wind Electrolysis	2007	*	3.61 (25.4)	LCOE \$0.045 kWh ⁻¹ , 100 mA cm ⁻² , alkaline cell
Greiner et al. [31]	Wind Electrolysis	2007	€900 kW ⁻¹ turbine cost, €1300 kW ⁻¹ electrolyzer, €5.1mil total cost	7.03 (49.52)	€0.062 kWh ⁻¹ LCOE, Diesel Generator Backup ^a , Electricity usage 42 kWh kg ⁻¹ H ₂ , alkaline cell
NREL 2006 [32]	Wind Electrolysis	2006	\$700 kW ⁻¹ electrolyzer	4.16-5.04 (29.3-35.5)	Wind electricity purchased LCOE \$0.038 kWh ⁻¹ , 81% capacity factor
<i>Mueller- Langer</i> et al. [5]	Wind Electrolysis	2007	€3.3 <i>mil t</i> otal Capex ^ь	9.08 (63.94)	90% load factor, alkaline cell, 64-70% overall efficiency
NREL 2008 [33]	Central Wind Electrolysis	2008	\$403.2 kW ⁻¹ electrolyzer, \$2120 kW ⁻¹ installed turbine cost, \$50.1 mil total Capex ^c	2.66-7.73 ^d (18.76-51.24)	98% electrolyzer load factor, 106 MW installation, 50 kWh kg ⁻¹ H ₂ requirement
<i>Acar</i> et al. [34]	Wind Electrolysis	2014	*	6.68 (47.01)	*
<i>Nikolaidis</i> et al. [26]	Wind Electrolysis	2005	\$500 kW ⁻¹ electrolyzer	6.98 (49.13)	Capacity factor 65%
NREL 2011 [35]	Central Wind Electrolysis	2011	\$403.2 kW ⁻¹ electrolyzer	4.42 (31.12)	Wind LCOE \$0.064 kWh ⁻¹ , 53.4 kWh kg ⁻ ¹ H ₂ , alkaline cell, 73% cell efficiency
Mason [36]	Wind Electrolysis	2005	\$900 kW ⁻¹ electrolyzer, \$7.6billion total Capex	3.56 (25.05)	Wind LCOE \$0.049 kWh ⁻¹ , 34% wind capacity factor, 500 W m ⁻² wind resource
<i>Ewan</i> et al. [6]	Wind	2005	\$150mil per 100 MW wind	7.04 (49.54)	Wind LCOE \$0.076

	Electrolysis		farm ^e		kWh ⁻¹
NREL 2013 [37]	Central Wind Electrolysis	2013	*	4.4 (31)	*
Pregger et al. [38]	Solar Electrolysis	2009	*	10.62 (74.8)	PV LCOE ^f €0.095 kWh⁻¹, alkaline cell
NREL 1998 [39]	Solar Electrolysis	1998	\$450 kW ⁻¹ DC electrolyzer, 750-2000 kW ⁻¹ PV Panel Cost, 10 MWe installation	8.05-15.16 (56.7-106.7)	Solar capacity factor 28%, electrolyzer efficiency 82%, \$4.96 kW ⁻¹ panel maintenance
Gray and Tomlinson [18]	Central Solar Electrolysis	2001	\$1200-2400 kW ⁻¹ peak PV cost, 150 MMSCFD H ₂ production	4.44-8.32 (31.25-58.6)	33% capacity factor, 90% plant utilization ^g , 18% panel efficiency, 85% electrolyzer efficiency, 275 W m ⁻² resource
Acar et al. [34]	Solar Electrolysis	2014	*	8.8 (62)	*
Nikolaidis et al. [26]	Solar Electrolysis	2007	\$400 kW ⁻¹ electrolyzer, \$0.75-5 W ⁻¹ PV panel cost	5.96-23.99 (41.96-168.9)	28% Solar capacity factor
Ewan et al. [6]	Solar Electrolysis	2005	\$60 m ⁻² PV panel cost	17.3 (121.8)	\$0.244 kWh ⁻¹ , 30-60 yr. panel life, 26 panel capacity factor, 12% PV efficiency, 76% overall electrolyzer efficiency, 98% availability
Mason [36]	Solar Electrolysis	2005	\$917 kW ⁻¹ PV panel cost	3.34 (23.5)	12% efficient PV panel, 271 W m ⁻² resource
Shaner et al. [40]	Solar Electrolysis	2016	\$371 m ⁻² Panel cost, \$260mil total capex, 10 tpd H ₂ production	11.47 (80.75) ^h	PV efficiency 16%, Electrolyzer plant efficiency 61%, Electrolyzer and PV capacity factor 20.4%
Wang et al. [41]	Nuclear High Temperature Electrolysis	2003	173-208 tpd H_2	3.17-6.47 (22.3-45.55)	773-1073 K temperature, 41-52% overall efficiency
Nikolaidis et	Nuclear	2006	\$500 kW ⁻¹ electrolyzer,	4.15-7.98	54.3 kWh kg ⁻¹ H ₂ energy requirement,

al. [26]	Electrolysis		1000 kg day⁻¹ H₂	(31.69-56.2) ⁱ	73% cell efficiency, \$0.048 kWh ⁻¹ LCOE
Ewan et al. [6]	Nuclear Electrolysis	2005	\$483.6mil total capex, 150 tpd H ₂	6.01 (42.33)	\$0.6 kWh ⁻¹ LCOE, 28% overall system efficiency, 75% cell efficiency
Mueller- Langer et al. [5]	Nuclear Electrolysis	2007	*	3.99 (28.1)	7884 hrs yr ⁻¹ operating, 64-70% efficiency
Harvego et al. [42]	Nuclear High Temperature Electrolysis	2010	\$200 kW ⁻¹ electrolyzer cost ⁱ , 600 MW _{th} facility	3.18 (22.37)	47.1% overall system efficiency, operating temperature 900 °C
Hauch et al. [43]	Nuclear High Temperature Electrolysis	2003	€350-550 kW ⁻¹ electrolyzer cost, total investment cost €6300 m ⁻² cell area	1.48-2.42 (10.43-17.08)	LCOE €0.014-0.037 kWh ⁻¹ , operating temperature 950 °C, 66% of LCOH from electricity
Parkinson et al. [28]	Nuclear Electrolysis	2016	\$800 kW ⁻¹ electrolyzer cost, \$829.1mil total capex, 100 kta H ₂ production	6.2-7.13 ^k (43.7-50.21)	\$0.1 kWh⁻¹ LCOE [∟] , 54.3 kWh kg⁻¹H₂

* Not provided in this study

a A €0.028 kWh⁻¹ charge for grid electricity backup

b Capital costs of individual electrolyzer or generation technology not provided

c Represents a future scenario where electrolyzer capital cost is reduced from mass production

d Varies with wind class site and grid electricity supply. Electricity supply ranges from \$0.046-

e No electrolyzer cost or scale provided

f Electricity costs in 2020 in North Africa, inclusive of 3000km of HVDC transmission

g Grid electricity top-up

h Un-taxed production value at plant gate

i At 97% capacity factor and electricity supply of \$0.048 kWh⁻¹, using only off-peak electricity the capacity factor is lowered to 47% and LCOH increased to \$7.98 kg⁻¹H₂

j One third of SOFC modules replaced annually

k Range of hydrogen values generated from varying uninstalled electrolyzer capital cost from \$400-800 kW⁻¹

I Sensitivity of LCOE from 0.02-0.1 kWh⁻¹ changes H₂ price from 2.80-7.13 for uninstalled electrolyzer capital cost of 800 kW⁻¹

Table S8: LCOH of the S-I and Cu-Cl nuclear thermochemical cycles reported in the literature

Study	Cycle	Year of Study	Plant Size	Hydrogen Cost \$ kg ⁻¹ H ₂ (\$ GJ ⁻¹)
Wang et al. [41]	S-I Cycle	2010	200 tpd.H ₂	2.05 (14.42)
Acar et al. [34]	S-I Cycle	2014	*	1.79 (12.58)
Dincer et al. [44]	S-I Cycle	2015	*	1.95 (13.7)
Nikolaidis et al. [26]	S-I Cycle	2017	$800 \text{ tpd}.\text{H}_2$	2.71 (19.09)
Wang et al. [41]	Cu-Cl Cycle	2010	200 tpd.H ₂	2.70 (18.98)
Acar et al. [34]	Cu-Cl Cycle	2014	*	1.60 (11.26)
Dincer et al. [44]	Cu-Cl Cycle	2015	*	2.53 (17.8)
Nikolaidis et al. [26]	Cu-Cl Cycle	2017	7 tpd. H_2	(2.35 (16.57)
Ewan et al. [6]	Nuclear Thermochemical Cycle	2005	*	1.47 (10.34)

Table 9: PEM Electrolyzer Stack Design Assumptions

Component	Value
Theoretical Minimum Energy (kwh kg ⁻¹ H ₂)	39.3
Cell Voltage Efficiency	85%
Total Balance of Plant (kWh kg ⁻¹ H ₂)	5.04
Total Electrical Usage (kWh kg ⁻¹) [45]	51.26
DI Water Cost (\$ ML ⁻¹) [45]	477
<i>Electrode Replacement Cost (% of Purchased Equipment Cost)</i> [45]	15% every 7 years
Capital Scaling Factor	1

Table S10: Economic Assumptions used in the discounted cash flow analysis

Fixed Financial Parameter	Value
Year of Analysis	2016
Construction Period	2 years
Start-Up Period	6 months
Start-Capacity	50%
Plant Lifetime (electrolyser facility)	25 Years
On-Stream Factor	Technology Dependent
Inflation	2 %
Weighted Average Cost of Capital	10% (Real, After Tax)
Finance	100% Equity
Capital Depreciation	MACRS 7-Year depreciation schedule [45]
Decommissioning Cost	10% of Depreciable Capital
Plant Salvage Value	10% of Depreciable Capital
Company Tax Rate	38.9%

Table S11: Fixed operating cost assumptions used in the electrolyzer discounted cash flow analysis

Fixed Operating Costs	Value
Insurance/Local Taxes/Royalties	2% Full Capital
Maintenance	2% Direct Capital
Labour	Calculated based on Parsons Infrastructure Technology Group [46]
Operating Supplies	10% Maintenance
Supervision	25% Labour
Lab/QC/QA	10% Operating Labour

Table S12: Process indirect and direct costs using in the electrolyzer discounted cash flow analysis

CAPEX Costs	Value
Equipment Setting [45]	12% PCE
Site Development [45]	2% PCE
Contractor and Engineering Fee	8%
Owner Engineering and Oversight	15%
Contingency	15%
Start-up Costs	5% Full Capital
Working Capital	5% Full Capital

- 1. Council, N.R., *The hydrogen economy: opportunities, costs, barriers, and R&D needs*. 2004: National Academies Press.
- 2. Ruth, M., M. Laffen, and T.A. Timbario, *Hydrogen pathways: cost, well-to-wheels energy use, and emissions for the current technology status of seven hydrogen production, delivery, and distribution scenarios.* 2009, National Renewable Energy Laboratory (NREL), Golden, CO.
- 3. Ramsden, T., et al., *Hydrogen pathways: Updated cost, well-to-wheels energy use, and emissions for the current technology status of ten hydrogen production, delivery, and distribution scenarios.* 2013, National Renewable Energy Laboratory (NREL), Golden, CO.
- 4. Molburg, J.C. and R.D. Doctor. *Hydrogen from steam-methane reforming with CO2 capture*. in 20th annual international Pittsburgh coal conference. 2003.
- 5. Mueller-Langer, F., et al., *Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term.* International Journal of Hydrogen Energy, 2007. **32**(16): p. 3797-3810.
- 6. Ewan, B.C.R. and R.W.K. Allen, *A figure of merit assessment of the routes to hydrogen.* International Journal of Hydrogen Energy, 2005. **30**(8): p. 809-819.
- 7. Hosseini, S.E. and M.A. Wahid, *Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development.* Renewable and Sustainable Energy Reviews, 2016. **57**: p. 850-866.
- 8. Khojasteh Salkuyeh, Y., B.A. Saville, and H.L. MacLean, *Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies.* International Journal of Hydrogen Energy, 2017. **42**(30): p. 18894-18909.
- 9. Collodi, G., et al., *Techno-economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel.* Energy Procedia, 2017. **114**: p. 2690-2712.
- 10. Muradov, N. Thermocatalytic CO2-free production of hydrogen from hydrocarbon fuels. in Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890. 2000.
- 11. Keipi, T., H. Tolvanen, and J. Konttinen, *Economic analysis of hydrogen production by methane thermal decomposition: Comparison to competing technologies.* Energy Conversion and Management, 2018. **159**: p. 264-273.
- 12. Collodi, G. and F. Wheeler, *Hydrogen production via steam reforming with CO2 capture.* Chemical Engineering Transactions, 2010. **19**: p. 37-42.
- Bonaquist, D., Analysis of CO2 emissions, reductions, and capture for large-scale hydrogen production plants. Praxair. Our-company/sustainable-development/greentechnologies-andclimate-change/less-carbon-more-green. <u>http://www</u>. praxair. ca/praxair. nsf/0/6D73B5DA741457DA8525772900703E30/\$ file/Praxair-CO2EmissionsReductionCapture-WhitePaper. pdf (Document consulté le 18 janvier 2013), 2010.
- Lemus, R.G. and J.M. Martínez Duart, Updated hydrogen production costs and parities for conventional and renewable technologies. International Journal of Hydrogen Energy, 2010. 35(9): p. 3929-3936.
- 15. Meerman, J.C., et al., *Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology.* International Journal of Greenhouse Gas Control, 2012. **9**: p. 160-171.

- 16. Kreutz, T., et al., *Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B: Economic analysis.* International Journal of Hydrogen Energy, 2005. **30**(7): p. 769-784.
- Rutkowski, M. Current (2005) hydrogen from coal without CO₂ capture and sequestration.
 2005 21-03-2018]; Available from: <u>http://www.hydrogen.energy.gov/h2a_prod_studies.html</u>.
- 18. Gray, D. and G. Tomlinson, *Hydrogen from coal.* Mitretek Technical Paper MTR, 2002. **31**: p. 2002.
- 19. Davison, J., et al., *Co-production of hydrogen and electricity with CO2 capture.* Energy Procedia, 2009. **1**(1): p. 4063-4070.
- 20. IEAGHG, CO2 Capture at coal based power and hydrogen plants, Report 2014/3. 2014: Cheltenham, UK.
- 21. Miller, M., A.S. Raju, and P.S. Roy, *The Development of Lifecycle Data for Hydrogen Fuel Production and Delivery.* 2017.
- 22. Yao, J., et al., *Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes.* Energy Conversion and Management, 2017. **145**: p. 278-292.
- 23. Simbollotti, G., *IEA Energy Technology Essentials-Hydrogen Production and Distribution.* International Energy, 2017. **544**.
- 24. Mondal, K.C. and S. Ramesh Chandran, *Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process.* International Journal of Hydrogen Energy, 2014. **39**(18): p. 9670-9674.
- 25. Parkinson, B., et al., *Techno-Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas.* Chemical Engineering & Technology, 2017. **40**(6): p. 1022-1030.
- 26. Nikolaidis, P. and A. Poullikkas, *A comparative overview of hydrogen production processes.* Renewable and sustainable energy reviews, 2017. **67**: p. 597-611.
- 27. Steinberg, M. and H.C. Cheng, *Modern and prospective technologies for hydrogen production from fossil fuels*. International Journal of Hydrogen Energy, 1989. **14**(11): p. 797-820.
- 28. Parkinson, B., et al., *Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals.* International Journal of Hydrogen Energy, 2018.
- 29. Lane, J. and P. Spath, *Technoeconomic analysis of the thermocatalytic decomposition of natural gas.* 2001, National Renewable Energy Lab., Golden, CO (US).
- 30. Bockris, J.O.M. and T.N. Veziroglu, *Estimates of the price of hydrogen as a medium for wind and solar sources.* International Journal of Hydrogen Energy, 2007. **32**(12): p. 1605-1610.
- 31. Greiner, C.J., M. KorpÅs, and A.T. Holen, *A Norwegian case study on the production of hydrogen from wind power.* International Journal of Hydrogen Energy, 2007. **32**(10): p. 1500-1507.
- 32. Levene, J., B. Kroposki, and G. Sverdrup, *Wind Energy and Production of Hydrogen and Electricity--Opportunities for Renewable Hydrogen: Preprint*. 2006, National Renewable Energy Lab.(NREL), Golden, CO (United States).
- 33. Saur, G., *Wind-to-hydrogen project: electrolyzer capital cost study*. 2008: Citeseer.

- 34. Acar, C. and I. Dincer, *Comparative assessment of hydrogen production methods from renewable and non-renewable sources.* International Journal of Hydrogen Energy, 2014. **39**(1): p. 1-12.
- 35. Saur, G. and T. Ramsden, *Wind electrolysis: hydrogen cost optimization.* Contract, 2011. **303**: p. 275-3000.
- 36. Mason, J.E., *World energy analysis: H2 now or later*? Energy Policy, 2007. **35**(2): p. 1315-1329.
- 37. Saur, G., et al., *II. E. 6 Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production.* 2013.
- 38. Pregger, T., et al., *Prospects of solar thermal hydrogen production processes.* International Journal of Hydrogen Energy, 2009. **34**(10): p. 4256-4267.
- 39. Glatzmaier, G., D. Blake, and S. Showalter, *Assessment of methods for hydrogen production using concentrated solar energy*. 1998, National Renewable Energy Lab., Golden, CO (United States).
- 40. Shaner, M.R., et al., *A comparative technoeconomic analysis of renewable hydrogen production using solar energy*. Energy & Environmental Science, 2016. **9**(7): p. 2354-2371.
- 41. Wang, Z.L., et al., *Comparison of sulfur–iodine and copper–chlorine thermochemical hydrogen production cycles.* International Journal of Hydrogen Energy, 2010. **35**(10): p. 4820-4830.
- 42. Harvego, E., et al. *Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant.* in *ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences.* 2008. American Society of Mechanical Engineers.
- 43. Hauch, A., et al., *Highly efficient high temperature electrolysis.* Journal of Materials Chemistry, 2008. **18**(20): p. 2331-2340.
- 44. Dincer, I. and C. Acar, *Review and evaluation of hydrogen production methods for better sustainability.* International Journal of Hydrogen Energy, 2015. **40**(34): p. 11094-11111.
- 45. Saur, G.R., James B.; Colella. W. *Hydrogen and fuel cells program: production case studies*. Current central hydrogen production from PEM electrolysis version 3.101 2012.
- 46. Rutkowski, M.D.K., M.; White, J.S.; Schoff, R.L.; Buchanan, T., *Hydrogen production facilities plant performance and cost comparisons*. 2002.