Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2018 Electronic supplementary information Fullerene derivative anchored SnO₂ for high-performance perovskite solar cells Kuan Liu^{ab}, Shuang Chen^c, Jionghua Wu^b, Huiyin Zhang^b, Minchao Qin^d, Xinhui Lu^d, Yingfeng Tu^{c*}, Qingbo Meng^{b*}, and Xiaowei Zhan^{a*} ^a Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China. E-mail: xwzhan@pku.edu.cn ^b CAS Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. E-mail: qbmeng@iphy.ac.cn ^c Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: tuyingfeng@suda.edu.cn ^d Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China. **Fig. S1** (a) Schematic device architecture of PHJ PSCs based on C9 modified SnO₂ ETL. (b) Cross-sectional SEM image of a typical C9 modified device. (c) Energy levels diagram of corresponding layers in the device. Fig. S2 XRD pattern of the low-temperature processed SnO₂ compact layer. Fig. S3 Transmission spectra of C9 modified and bare SnO₂ deposited on glass substrates. Fig. S4 Top-view SEM images of the perovskite films on C9 modified and bare SnO₂ substrates. Fig. S5 XPS survey scans for C9 modified SnO₂ and bare SnO₂. **Fig. S6** XRD patterns of the $(FAPbI_3)_x(MAPbBr_3)_{1-x}$ based perovskite on C9 modified and bare SnO_2 substrates. **Fig. S7** The polar intensity profiles along the ring in the q_r range of 0.98 to 1.02 Å⁻¹ for the perovskite films deposited on C9 modified and bare SnO₂, respectively. **Fig. S8** UPS results of SnO_2 , C9 and $(FAPbI_3)_x(MAPbBr_3)_{1-x}$ based perovskite in the (a) secondary-electron cut-off and (b) valence-band regions. **Fig. S9** The relationship of $(\alpha h \upsilon)^{1/2}$ vs energy for the perovskite film. The bandgap can be determined *via* linear extrapolation of the leading edges of the $(\alpha h \upsilon)^{1/2}$ curve to the base line. **Fig. S10** Nyquist plots of representative devices based on (a) C9 modified SnO_2 and (b) bare SnO_2 ETL in the dark under 700, 800, 900 mV bias voltage. The relationship between bias voltages and (c) R_{rec} and (d) R_s for both devices. Inset: equivalent circuit for the simulation of charge transfer and recombination process. Fig. S11 TAS results for the perovskite films deposited on C9 modified and bare SnO₂. **Fig. S12** Hysteresis effect in *J-V* curves for the best-performing PHJ PSCs based on C9 modified and bare SnO₂ ETL under different scanning directions. **Fig. S13** The steady-state photocurrent output and stabilized PCE of the modified device based on SnO₂/C9 and the control device based on bare SnO₂ under their maximum power point. **Table S1.** The band structure parameters of SnO_2 , C9 and $(FAPbI_3)_x(MAPbBr_3)_{1-x}$ based perovskite. | Material | Work | Valance band | $E_{\rm g}\left({ m eV}\right)$ | HOMO (eV) | LUMO (eV) | | |----------|---------------|--------------|---------------------------------|-----------|-----------|--| | | function (eV) | maximum (eV) | | | | | | SnO_2 | 4.17 | 3.68 | 3.71 | 7.85 | 4.14 | | | С9 | 4.07 | 1.98 | 2.02 | 6.05 | 4.03 | | | Perovski | te 4.12 | 1.46 | 1.54 | 5.58 | 4.04 | | Table S2. Fitting parameters of bi-exponential decay function in time-resolved PL spectra. | Films | Δ. | τ_1 (ns) | A_2 | τ ₂ (ns) | Average decay | |--|-------|---------------|-------|---------------------|-------------------------------| | riiiis
 | A_1 | | | | time τ (ns) ^a | | Al ₂ O ₃ /perovskite | 0.54 | 644.68 | 0.41 | 2032.48 | 1238.90 | | SnO ₂ /perovskite | 0.30 | 82.82 | 0.67 | 248.47 | 197.26 | | SnO ₂ /C9/perovskite | 0.30 | 62.68 | 0.67 | 160.61 | 130.17 | ^a Average decay time is calculated according to the equation: $\tau = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$. **Table S3.** Fitting parameters of bi-exponential decay function in TPV measurement. | Devices | Λ. | τ ₁ (ms) | A_2 | τ ₂ (ms) | Average decay | | |----------------------|-------|---------------------|-------|---------------------|-------------------------------------|--| | Devices | A_1 | | | | time τ_{ν} (ms) ^a | | | SnO ₂ /C9 | 0.79 | 0.09 | 0.18 | 8.47 | 1.65 | | | SnO_2 | 0.81 | 0.07 | 0.17 | 2.42 | 0.48 | | ^a Average decay time is calculated according to the equation: $\tau_v = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$. Table S4. Fitting parameters of bi-exponential decay function in TPC measurement. | Devices | A_1 | τ ₁ (μs) | A_2 | τ ₂ (μs) | Average decay | | |----------------------|-------|---------------------|-------|---------------------|---------------------------------------|--| | | 1 | VI (pas) | | | time τ_c (μ s) ^a | | | SnO ₂ /C9 | 0.60 | 1.03 | 0.60 | 1.03 | 1.03 | | | SnO_2 | 0.41 | 1.21 | 0.41 | 1.21 | 1.21 | | ^a Average decay time is calculated according to the equation: $\tau_c = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$. **Table S5.** Photovoltaic parameters of PHJ PSCs with different thickness of C9 modifying layer. | Devices | Concentration | $J_{ m SC}$ (mA | Calculated | $V_{\mathrm{OC}}\left(\mathbf{V}\right)$ | FF (%) | H-index ^a | PCE | |---------------------------------------|----------------|--------------------|-------------------------------------|--|--------|----------------------|------| | | $(mg mL^{-1})$ | cm ⁻²) | $J_{\rm SC}$ (mA cm ⁻²) | | | (%) | (%) | | | 5 | 23.1 | 21.9 | 1.10 | 76.1 | 0.9 | 19.3 | | | 2 | 23.2 | 22.0 | 1.11 | 77.6 | 0.9 | 20.0 | | SnO ₂ /C9 | 1 | 23.5 | 22.2 | 1.11 | 78.1 | 0.8 | 20.4 | | | 0.5 | 24.1 | 22.8 | 1.12 | 78.9 | 0.5 | 21.3 | | | 0.2 | 23.8 | 22.5 | 1.12 | 77.9 | 1.7 | 20.6 | | SnO ₂ /PC ₆₁ BM | 0.5 | 23.0 | 22.0 | 1.10 | 77.0 | 2.8 | 19.9 | ^a H-index = $(PCE_{backward}$ - $PCE_{forward})/PCE_{backward}$.