Electronic Supplementary Information (ESI)

A capacity recoverable zinc-ion micro-supercapacitor

Guoqiang Sun,^a Hongsheng Yang,^a Guofeng Zhang,^a Jian Gao,^a Xuting Jin,^a Yang Zhao,^a Lan Jiang^b and Liangti Qu^{*ac}

^aKey Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: lqu@bit.edu.cn ^bLaser Micro-/Nano-Fabrication Laboratory, Beijing Institute of Technology, Beijing 100081, P. R. China

^cKey Laboratory for Advanced Materials Processing Technology, Ministry of Education of P. R. China; State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China

Fig. S1 (A) Photographs of the CNT paper at bent state. (B) Photographs of patterns machining by laser, scale bars: 1 cm. (C) SEM image of the CNT paper.

Fig. S2 (A-B) SEM images of the anode after plating at different magnification. (C) The XRD patterns of anode before and after the plating process.

Fig. S3 SEM images of cathode (A-B) before and (C-D) after plating process at different magnification.

Fig. S4 (A) FTIR spectra of the CNT paper. (B) XRD patterns of anode before and after the plating process.

Fig. S5 (A) CV curves CNT paper, tested in three-electrode system at 100 mV s⁻¹. Electrochemical performance of the SmSC in 1 M ZnSO₄ electrolyte before the plating process: (B) CV curves at different scan rate; (C) GCD curves at different current density; (D) Specific capacitances versus various current density.

Fig. S6 Electrochemical performance of the SmSC (A-C) in various concentration of $ZnSO_4$ or (D-F) in various electrolyte before the plating process: (A, D) CV curves at 100 mV s⁻¹; (B, E) GCD curves; (C, F) specific capacitances. In D-F, the concentration of electrolyte is all 0.5 M.

Fig. S7 (A) CV and (B) GCD curves of the ZmSC in 1 M ZnSO₄ aqueous electrolyte. (C) Capacity comparison and (D) Nyquist plots of the ZmSC in aqueous and the gel electrolyte.

Fig. S8 (A) Cross-sectional SEM image of CNT paper (B) Volumetric energy density versus volumetric power density for various energy storage devices.

Fig. S9 Photograph of a timer powered by one ZmSC for three minutes.

Fig. S10 Photograph of (A) a calculator and (B) a red LED light powered by one ZmSC.

Fig. S11 Cycling performance of the ZmSC in 10 mA cm⁻².

Fig. S12 (A) The contact angle, (B) CV curves, (C) GCD curves and (D) Nyquist plots of the ZmSC before and after plasma treatment for various minutes. The measurement is carried out in 1 M ZnSO₄ electrolyte.

Fig. S13 (A) SEM images of the Zn anode prepared via electrodeposition. (B) CV and (C) GCD curves of the ZmSC with an electrodeposited Zn anode in 1 M ZnSO₄ aqueous electrolyte. (D) Capacity comparison of the ZmSC constructed with different Zn anode.

Fig. S14 The XRD pattern of the Zn anode prepared via conventional electrochemical deposition method.

Fig. S15 Electrochemical performance of the ZmSC after plating with different electrolyte. (A) CV curves at 100 mV s⁻¹. (B) GCD curves at 1 mA cm⁻². (C) Area capacitance. The measurement is carried out in 1 M ZnSO₄ electrolyte.

Fig. S16 Electrochemical performance of the ZmSC after plating with different concentration of ZnSO₄ for two times. (A) CV curves at 100 mV s⁻¹. (B) GCD curves at 1 mA cm⁻². (C) Area capacitance. The measurement is carried out in 1 M ZnSO₄ electrolyte.

Fig. S17 Electrochemical performance of the ZmSC after plating with 1 M ZnSO₄ for different times. (A) CV curves at 100 mV s⁻¹. (B) GCD curves at different current density. (C) Area capacitance versus the plating times. The measurement is carried out in 1 M ZnSO₄ electrolyte.

Fig. S18 Electrochemical performance of the ZmSC in different concentration of $ZnSO_4$ electrolyte. (A, C) CV curves at 100 mV s⁻¹. (B, D) GCD curves at 1 mA cm⁻². The ZmSCs are fabricated via plating with 0.2 M ZnSO₄ for (A, B) two or (C, D) four times.

Fig. S19 Electrochemical performance of the ZmSC in different concentration of $ZnSO_4$ electrolyte. (A, C) CV curves at 100 mV s⁻¹. (B, D) GCD curves at 2 mA cm⁻². The ZmSCs are fabricated via plating with 1 M ZnSO₄ for (A, B) four or (C, D) six times.

Fig. S20 Electrochemical performance of the ZmSC after plating with 1 M ZnSO₄ for two times. (A, C) CV curves at 100 mV s⁻¹. (B, D) GCD curves at 1 mA cm⁻². A-B is tested in 0.5 M Na₂SO₄; C-D is tested in 0.5 M LiCl.

Fig. S21 (A) SEM image, (B) magnified SEM image and (C) XRD pattern of the CNT cathode after 6000th cycles. (D) SEM image, (E) magnified SEM image and (F) XRD pattern of the Zn anode after 6000th cycles.

Table S1	EDX elemental	content results of	of the pristine	anode, tl	he anode	after plating	process	and
		afi	ter 6000th cvo	eles				

Dristino onodo	Element atomic	С	0	Zn
Pristine anode	percent (%)	Omic C O %) 76.28 23.72 Omic C O %) 31.17 15.47 5 omic C O 6 6 %) 51.76 28.02 2	0	
After plating	Element atomic	С	0	Zn
After plating	percent (%)	31.17	15.47	53.37
A fter avalag	Element atomic	С	0	Zn
After cycles	percent (%)	51.76	28.02	20.22

and after 6000th cycles					
Drigting asthada	Element atomic	С	0	Zn	
Pristine cathode	percent (%)	76.28	23.72	0	
After plating	Element atomic	С	0	Zn	
After plating	percent (%)	77.96	21.72	0.32	
A ftor avalag	Element atomic	С	0	Zn	
Aner cycles	percent (%)	74.45	23.27	2.28	

Table S2 EDX elemental content results of the pristine cathode, the cathode after plating process 1.0 6000+h 1

Table S3 EDX elemental content results of the charged and discharged cathode

_

Tuble 55 EDA elemental content results of the enarged and discharged canode				
Discharged state	Element atomic	С	О	Zn
Discharged state	percent (%)	78.86	20.02	1.13
Charged state	Element atomic	С	0	Zn
Charged State	percent (%)	77.96	21.72	0.32

Table S4 EDX elemental content results of the charged and discharged anode					
Discharged state	Element atomic	С	0	Zn	
Discharged state	percent (%)	50.77	36.88	12.35	
Charged state	Element atomic	С	0	Zn	
	percent (%)	33.22	45.29	21.49	