Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2018

1 Supplementary information

1.1 Simulation results

Table 1: Main mass and energy flows as a results of the process modelling (NEC: *N*-ethylcarbazole, DBT: dibenzyltoluene, AB: 1,2-dihydro-1,2-azaborine, FA: formic acid, MET: methanol, NAP: naphthalene, TOL: toluene, CGH₂: Compressed Hydrogen Gas)

	NEC		DBT		AB		FA		MET		NAP	
De-hydrogenation Covering	Burner	Waste heat	Burner	Waste heat	Burner	Waste heat	Burner	Waste heat	Burner	Waste heat	Burner	Waste heat
	Mass flow [kg/h]											
Hydrogen input	39.6	30.0	40.1	30.0	34.2	30.0	34.8	30.0	33.0	30.0	41.9	30.0
Hydrogen burner	9.6	0.0	10.3	0.0	4.1	0.0	4.7	0.0	2.9	0.0	11.8	0.0
Hydrogen fuel cell	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
H ₀ LOHC	639.4	484.8	605.7	450.9	469.2	412.6	758.9	654.9	238.0	218.5	532.7	381.9
	Energy flow [kW]											
Electrolysis	1,915.2	1,452.2	1,950.8	1,452.2	1,651.9	1,452.2	1,680.9	1,452.2	1,590.7	1,452.1	2,025.6	1,452.3
Hydrogenation	-261.2	-198.1	-329.6	-246.5	-138.5	-121.6	-90.3	-86.3	-89.4	-83.0	-390.0	-286.5
De-hydrogenation	323.5	212.1	348.4	259.4	139.3	122.5	159.8	126.0	96.8	88.4	400.5	287.2
Hydrogen purification	0.0	0.0	0.0	0.0	107.0	94.1	198.1	170.8	135.3	123.5	124.9	89.6
H ₂ O-pump	1.8	1.2	1.6	1.2	1.4	1.2	1.4	1.2	1.4	1.2	1.9	1.2
Compressors	-	-	-	-	-	-	132.4	121.2	34.0	31.1	0	0
Blower	12.3	9.1	12.5	9.1	10.4	9.1	10.6	9.1	10.0	9.1	13.0	9.1
LOHC-pump	2.4	1.8	2.5	1.8	5.8	5.0	42.5	38.0	-	-	5.6	4.0
PSA	-	-	-	-	107.0	94.1	198.1	170.8	135.3	123.5	124.9	89.6
Distillation	-	-	-	-	-	-	8,8850.1	7873.8	-	-	-	-

	TC	CGH ₂			
De-hydrogenation Covering	Burner	Waste heat			
	Mas	ss flows [k	g/h]		
Hydrogen input	42.0	30.0	30.0		
Hydrogen burner	12.0	0.0	-		
Hydrogen fuel cell	30.0	30.0	30.0		
H ₀ LOHC	640.2	457.6	-		
	Energy flows [kW]				
Electrolysis	2,031.9	1,452.3	1,452.1		
Hydrogenation	-396.3	-283.2	-		
De-hydrogenation	405.0	295.9	-		
Hydrogen purification	130.6	93.4	-		
H ₂ O-pump	1.5	1.2	1.2		
Compressors	0	0	32.8ª		
Blower	13.1	9.1	9.1		
LOHC-pump	1.1	1.2	-		
PSA	130.6	93.4	-		
CO ₂ -Absorption	-	-	-		

^aH₂-compressor

1.2 Base and design information of the equipment

Unit	Overall ratio factor	Base Capacity	Unit	Design Capacity	Base Cost [€]	Scaling Factor	No. Units	Base Year	Ref.
Hydrogen burner	4.60	50.7	MW	\dot{Q}_{burner}	3,850,000	0.83	1	2002	[1]
Blower	4.60	26	m ³ /s	V_{blower}	16,830	0.57	2(1)	2002	[1]
PSA Unit	1.83	168.75	$kg_{\rm H2,feed}/h$	\dot{m}_{PSA}	205,000,000	1.00	1	2013	[2]
Compressor	4.60	6	MW	$P_{compressor}$	1,120,000	0.68	1	2002	[1]
Pump	4.60	1	m ³ /s	V_{pump}	17,820	0.36	2	2002	[1]
Electrolysis	1.83	1	kW	$P_{electrolysis}$	760	1.00	1	2016	[3]
Fuel cell	1.83	1	kW	$P_{fuelcell}$	3,010	1.00	1	2015	[4]
H ₂ -compressor	1.83	1	kW	$P_{H2,compressor}$	2,500	1.00	1	2006	[5]
H ₂ -pressure tank	1.83	1	kg_{H2}	m_{H2}	$380^{a}/930^{b}$	1.00	1	2014	[6]
LOHC-tank	4.60	1	m ³	V _{LOHC}	193	1.00	2	2014	[7]
Hydrogenation	1.83	30	kg/h	$\dot{m}_{H2,out}$	Eq. (5)	0.60	1	2017	[7, 8]
De-hydrogenation	1.83	30	kg/h	$\dot{m}_{H2,out}$	Eq. (6)	0.60	1	2017	[7, 8]
Cavern	1.83	500,000	m ³	V_{H2}	3,800,000	0.28	1	2013	[9]
Distillation	4.60	104.9	kg/h	\dot{m}_{in}	50,000	0.70	2	2006	[10]

Table 2: Base and design information for the equipment cost calculation

^a 200 bar, ^b 700 bar

2 References

- 1. König, D.H., Freiberg, M., Dietrich, R.-U., Wörner, A.: Techno-Economic Study of the Storage of Fluctuating Renewable Energy in Liquid Hydrocarbons. Fuel Cells **159**, 289–297 (2015). doi: 10.1016/j.fuel.2015.06.085
- Mivechian, A., Pakizeh, M.: Hydrogen Recovery from Tehran Refinery Off-Gas Using Pressure Swing Adsorption, Gas Absorption and Membrane Separation Technologies. Simulation and Economic Evaluation. Korean Journal of Chemical Engineering 30(4), 937–948 (2013). doi: 10.1007/s11814-012-0221-y
- 3. Fasihi, M., Bogdanov, D., Breyer, C.: Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants. Energy Procedia **99**, 243–268 (2016). doi: 10.1016/j.egypro.2016.10.115
- 4. Körner, A., Tam, C., Bennett, S., Gagné, J.F.: Technology Roadmap-Hydrogen and Fuel Cells. International Energy Agency (IEA), Paris. http://www.iea.org/media/freepublications/technologyroadmaps/TechnologyRoadmapHydrogen_Annex.pdf (2015). Accessed 25 August 2017
- 5. Wietschel, M., Ball, M., Hasenauer, U., Landinger, H., Mattucci, A., Ingólfsson, H.P., Tarquini, P.: Projektbericht: Energy Corridor Optimization for European Markets of Gas, Electricity and Hydrogen. Project Acronym: ENCOURAGED. Fraunhofer Institut für System- und Innovationsforschung (ISI) (2006)
- 6. Parks, G., Boyd, R., Cornish, J., Remick, R.: Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs. Systems Integration (2014)
- 7. Teichmann, D.: Konzeption und Bewertung einer nachhaltigen Energieversorgung auf Basis flüssiger Wasserstoffträger (LOHC). Dissertation, Friedrich-Alexander-Universität (2014)
- Eypasch, M., Schimpe, M., Kanwar, A., Hartmann, T., Herzog, S., Frank, T., Hamacher, T.: Model-Based Techno-Economic Evaluation of an Electricity Storage System Based on Liquid Organic Hydrogen Carriers. Applied Energy 185(Part 1), 320–330 (2017). doi: 10.1016/j.apenergy.2016.10.068
- 9. Acht, A.: Salzkavernen zur Wasserstoffspeicherung (2013)
- 10. Franziska Müller-Langer: Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. Dissertation, Technische Universität Hamburg. https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_9.pdf (2011)