Supporting Information

Bi-facial Stamping for High Efficiency Perovskite Solar Cells

Yong Zhang^{a†}, Seul-Gi Kim^{a†}, Donghwa Lee^b, Hyunjung Shin^c, Nam-Gyu Park^a*

^aSchool of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea. ^bDepartment of Materials Science and Engineering, and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea ^cDepartment of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea [†]These authors contributed equally to this work.

* Corresponding author. E-mail: npark@skku.edu

Experimental Section

*Synthesis of CH*₃*NH*₃*I*: Methylammonium iodide (MAI, CH₃NH₃I) was synthesized by reacting 27.8 mL of CH₃NH₂ (40 wt% in methanol, TCI) with 30 mL of hydroiodic acid (57 wt% in water, Aldrich) in a round-bottomed flask in an ice bath for 2 h with magnetic stirring. The precipitates were recovered by evaporating at 50 °C for 1 h using rotary evaporator. Resulting product was dissolved in ethanol and recrystallized by diethyl ether for three times, and then finally dried at 50 °C in the vacuum oven for 24 h and then stored in Ar filled glove box. All the chemicals were used as-received without further purification.

Synthesis of $HC(NH_2)_2I$: Formamidinium iodide (FAI, $HC(NH_2)_2I$) was synthesized by reacting 15 g of formamidinium acetate (99%, Aldrich) with 30 mL of hydroiodic acid in a

round-bottomed flask in an ice bath for 2 h. Dark yellow precipitate was recovered by evaporating at 60 $^{\circ}$ C for 1 h. Resulting product was dissolved in ethanol and recrystallized in diethyl ether for three times. The final white precipitate was dried at 50 $^{\circ}$ C in the vacuum oven for 24 h and then stored in Ar filled glove box.

*Synthesis of CH*₃*NH*₂*CH*₃*I*: Ethylammonium iodide (EAI, CH₃CH₂NH₃I) was synthesized by reacting 20 mL of ethylamine (2.0 M in methanol, Aldrich) and 6 mL of hydroiodic acid in a round-bottomed flask at 0 °C for 2 h. The precipitate was collected by evaporation at 50 °C for 1 h, which is followed by be dissolved in ethanol and recrystallized in diethyl ether for three times. Then finally dried at 50°C in a vacuum oven for 24 h and stored in Ar filled glove box.

Solar cell fabrication: Fluorine doped tin oxide (FTO) coated conductive glasses (Pilkington, TEC-8, 8 Ω /sq) were cleaned by detergent, followed by ultrasonic treatment in ethanol for 20 min and UV/Ozone (UVO) treatment for 20 min. UVO treatment was again conducted for 15 min prior to use. We have fabricated two types of perovskite solar cells: Normal mesoscopic structure with a thin TiO₂ layer and mesoporous TiO₂ layer and planar structure with a thin SnO₂ layer. For the normal mesoscopic structure, the thin TiO₂ film as a hole blocking layer (bl-TiO₂) was fabricated by immersing FTO glass in 20 mM TiCl₄ aqueous solution (Sigma-Aldrich, > 98%) at 90 °C for 20 min, followed by annealing at 125 °C for 10 min. Homemade nanocrystalline TiO₂ (average particle size of about 50 nm) paste was diluted in 1-butanol (1 g/10 mL), which was spin-coated on the bl-TiO₂ film at 2000 rpm for 20 s to form a mesoporous TiO₂ (mp-TiO₂) layer. The spin-coated mp-TiO₂ layer was annealed at

125 °C for 5 min on a hot plate and then at 550 °C for 1 h in a muffle furnace. The annealed mp-TiO₂ film was post-treated with 20 mM TiCl₄ aqueous solution at 90 °C for 10 min, which was again annealed at 500 °C for 30 min. For the planar structure, the SnO₂ film was fabricated by spin-coating the commercial SnO₂ colloidal solution (Alfa Aesar, 15% in H₂O), diluted to 4 wt%, at 4000 rpm for 20 s, which was annealed at 180 °C on hotplate for 30 min. The precursor solution for the MAPbI₃ layer was prepared by mixing 461 mg PbI₂ (TCI, 99.99%), 159 mg MAI and 71 µL of N,N'-dimethyl sulfoxide (DMSO) (>99.5%, Sigma) (molar ratio 1:1:1) in 521 µL of N,N'-dimethylformamide (DMF) (anhydrous, 99.8% Sigma-Aldrich). The precursor solution for the FAPbI₃ layer was prepared by mixing 461 mg PbI₂, 172 mg FAI and 71 µL DMSO in 600 µL DMF (molar ratio 1:1:1). The precursor solution for the EAPbI₃ layer was prepared by mixing 461 mg PbI₂, 173 mg EAI and 71 µL DMSO in 600 µL DMF (molar ratio 1:1:1). Perovskite films were fabricated using the Lewis acid-base adduct method according to our report.^{S1} The perovskite solutions were spin-coated at 4000 rpm for 20 s and 0.5 mL diethyl ether was dripped on the rotating substrate (10 s after spinning) to obtain adduct films. For face-to-face perovskite film stamping, MAPbI₃-coated substrate and FAPbI₃ (or EAPbI₃)-coated substrate were separately prepared. The FAPbI₃ (or EAPbI₃) coated substrate was first prepared by annealing at 100 °C for 1.5 min and then the MAPbI₃ coated substrate was prepared by annealing at 65 °C for 1 min without interval. The pre-annealed MAPbI₃ film was directly put on the FAPbI₃ film without pressure, which was annealed at 100 °C on hot plate for 9 min. Care should be taken in placing the MAPbI₃ film at the top and the FAPbI₃ (or EAPbI₃) film at the bottom during stamping process (see Figure 1 in main text). After stamping two films were detached. The MAPbI₃ film obtained by consecutively annealing at 65 °C for 1 min and at 100 °C for 9 min was used as reference. The α -FAPbI₃ film obtained by annealing at 150 °C for 40 min was used as reference. To fabricate the hole transporting layer, 20 µL of the spiro-MeOTAD solution (73.2 mg spiro-MeOTAD in 1 mL chlorobenzene including 28.8 µL t-BP (tert-butylpyridine) and 17.5 µL Li-TFSI solution (520 mg Li-TFSI in 1 mL acetonitrile (Sigma-Aldrich, 99.8%))) was spin-coated at 3000 rpm for 30 s. Finally, Ag electrode with a thickness of ca. 150 nm was deposited on top of the spiro-MeOTAD layer under 4×10⁻⁷ Torr using thermal evaporator. The as-fabricated PSCs were stored in the desiccator overnight before the current density-voltage (*J-V*) measurement.

Characterizations. J-V curves were recorded using a Keithley 2400 source meter under simulated one sun illumination (AM 1.5G, 100 mW/cm²) using a solar simulator (Oriel Sol 3A class AAA) equipped with 450 W Xenon lamp (Newport 6280NS), in which light intensity was adjusted by NREL-calibrated Si solar cell with KG-2 filter. Solar cells were covered with a metal mask with aperture area of 0.125 cm² during the measurement. External quantum efficiency (EQE) was measured by either an EQE system (PV measurement Inc.) equipped with a 75 W Xenon source lamp (USHIO, Japan) or a QuantX-300 Quantum Efficiency System (Newport) equipped with 100 W Xenon lamp. EQE data were collected at DC mode without bias light. The absorbance of the perovskite film was measured by UV-vis spectrometer (Lambda 45, Perkin-Elmer). Surface and cross-sectional morphologies were investigated by scanning electron microscope (SEM) (JSM-7600F, JEOL). X-ray diffraction (XRD) data were collected from a HP-thin film XRD-D8 Advance (Bruker), where Cu K α radiation was used ($\lambda = 1.5406$ Å) and a scan rate was 2°/min. Steady-state

photoluminescence (PL) and time-resolved photoluminescence (TRPL) were measured using a fluorescence lifetime spectrometer (Quantaurus-Tau C11367-12, Hamamatsu). Perovskite films were photo-excited with a 372 nm laser pulsed at the frequency of 10 MHz. The PL was detected by high sensitivity photon counting near IR detector. The cross-sectional morphologies and structures of the full cells were investigated using a high-resolution transmission electron microscope. The samples were prepared by vertical etching using focused ion beam (FIB) equipment (SMI3050TB). The cross-sectional surface was in-situ coated with platinum using the gas injection system (Zeiss CrossBeam) to protect the surface from damage during FIB milling. An FTO/SnO₂/perovskite/spiro-MeOTAD specimen with approximately 40 nm in thickness was obtained. TEM images and SAED patterns were obtained using a high-resolution transmission electron microscope (JEOL JEM-2100F) at an acceleration voltage of 200 kV in the high-angle annular dark-field imaging mode. Trap density was estimated using SCLC (Space-Charge-Limited Current) method. Devices with the FTO/perovskite/Au layout were measured in the dark from 0 V to 1.5 V at the scan rate of 1000 ms. The observed response was analyzed according to SCLC theory. Trap density (n_t) was estimated using the relation $V_{\text{TFL}} = en_t d^2 / 2\varepsilon \varepsilon_0$, ^{S2} where V_{TFL} is the trap-filled-limit voltage, e is electron charge (1.602 \times 10⁻¹⁹ C), ε is dielectric constant, ε_0 is the vacuum permittivity (8.8542 \times 10⁻¹⁴ F/cm) and d is the perovskite film thickness. The dielectric constant was calculated using the equation of $\varepsilon = Cd/A\varepsilon_0$, where C is capacitance at high frequency (~ 10^4 Hz) and A is area.^{S3,S4}

Molecular electrostatic potential. Molecular electrostatic potential (EP) was calculated using density functional theory (B3LYP/6-31G*) for two cases of under vacuum or in DMF solvent.

The calculations were carried out by using Spartan'10 (Wavefunction, 2010) program. EP maps were obtained to present electrostatic charges, where electron-rich and electron-poor part was depicted as red and blue color, respectively.

Density of state (DOS) and formation energy calculation. For the density of states (DOS) and formation energy calculation, DFT calculations were performed with projector augmented wave (PAW) method^{S5} and the revised Perdew, Burke, and Ernzerhof GGA (PBEsol)^{S6,S7} for the exchange-correlation potential as implemented in Vienna Ab-initio Simulation Package (VASP) code.^{S8} α -FAPbI₃ has three formula units in a unit cell while δ-FAPbI₃ has two formula units in a unitcell. So, the difference in finite cell size effect during charged system calculation is minimized by choosing $3 \times 3 \times 2$ supercell for α -FAPbI₃ and $3 \times 3 \times 3$ supercell for δ -FAPbI₃ in which both α - and δ -FAPbI₃ have identical system size of 54 formula units (648 atoms and 2916 electrons) in each supercell. The optimized lattice constants are a = 26.95 Å and c = 22.01 Å for α -FAPbI₃ and a = 25.98 Å and c = 23.71 Å for δ-FAPbI₃. Periodic boundary condition and Monkhorst-Pack k-point sampling^{S9} with a Γ -centred k-point grid of up to 2×2×2 was used for the Brillouin zone integration. An energy cutoff of 500 eV was used for the plane-wave representation of the wavefunctions and the 5d electrons of Pb were considered as valence electrons. Atomic structures were relaxed until all Hellman-Feynman forces were below 0.01 eV/Å. The formation energy is calculated by subtracting the energy of FAI and PbI₂ from the total energy of α - or δ -FAPbI₃. Monoclinic and Rhombohedral crystal structure is used to calculate the energy of FAI ($P2_1/c$) and PbI_2 (P3m1).

Table S1. TRPL curves fitting results obtained using bi-exponential decay equation $y = y_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$, in which τ_1 is time constant for fast decay component and τ_2 is time constant for slow component. Effective lifetime was estimated from $\tau_{eff} = A_1 \tau_1/(A_1+A_2) + A_2 \tau_2/(A_1+A_2)$.

sample	τ_1 (ns)	$A_1/(A_1+A_2)$	τ_2 (ns)	$A_2/(A_1+A_2)$	$ au_{eff}\left(ns ight)$
MAPbI ₃ -before	2.61	95.13%	245.80	4.87%	14.45
MAPbI ₃ (F)-after	12.21	43.59%	537.34	56.41%	308.42
FAPbI ₃ -before	36.45	62.75%	295.60	37.25%	132.98
FAPbI ₃ -after	1.13	82.67%	428.53	17.33%	75.19
MAPbI ₃ -before	2.83	97.81%	254.19	2.19%	8.34
MAPbI ₃ (E)-after	7.22	96.59%	742.38	3.41%	32.30
EAPbI ₃ -before*	-	-	-	-	-
EAPbI ₃ -after	11.40	64.22%	286.61	35.78%	109.86

*No decay signal

Table S2.	Electrostatic	potential	of DMSO,	MA^+ ,	FA^+	and	EA+	under	vacuum	or	in	DMF
solvent.												

Material	Atom	Vacuum (kJ/mol)	DMF (kJ/mol)
DMSO	0	-213.884	-249.755
DMSO	С	121.227	154.721
\mathbf{MA}^{+}	С	489.38	468.968
\mathbf{MA}^{+}	Ν	767.332	794.038
\mathbf{FA}^+	N(p) ^a	449.482	447.251
\mathbf{FA}^+	N-C-N ^b	739.214	743.479
EA^+	C(2)	377.423	344.652
EA^+	C(1)	468.243	455.742
\mathbf{EA}^+	Ν	740.704	789.012

^aElectrons are localized on N

^bElectrons are delocalized on the resonance structure of N-C-N

110/01 110/mp 110/ perovskite/spiro incom//ng.							
Device	Scan direction	J _{sc} (mA/cm ²)	$V_{ m oc}\left({ m V} ight)$	FF	PCE (%)	Average PCE (%)	
MAPhI ₂₋ after	Reverse	21.820	1.126	0.788	19.36	15.20	
WAI 013-alter	Forward	21.810	1.051	0.481	11.03	- 15.20	
MAPbI ₃ -reference	Reverse	20.968	1.066	0.780	17.43	13 /1	
	Forward	21.156	1.040	0.427	9.39	- 13.41	
FAPbI ₃ -after	Reverse	22.696	1.055	0.766	18.34	15 56	
	Forward	22.679	0.975	0.578	12.78	- 15.50	
α -FAPbI ₃ -reference -	Reverse	22.642	1.080	0.705	17.24	16.15	
	Forward	22.573	1.034	0.645	15.05	- 10.13	

Table S3. Photovoltaic parameters of best performing devices based on the stamped MAPbI₃, FAPbI₃ and reference films in the normal mesoscopic structure of FTO/bl-TiO₂/mp-TiO₂/perovskite/spiro-MeOTAD/Ag.

Device	Scan direction	J _{sc} (mA/cm ²)	$V_{ m oc}\left({ m V} ight)$	FF	PCE (%)	Average PCE (%)
MAPbI ₃ -before	Reverse	16.811	1.051	0.551	9.73	9.15
	Forward	16.624	1.432	0.494	8.57).15
MAPhI ₂ (F)-after	Reverse	22.022	1.126	0.814	20.18	17 73
MAI 013(17)-alter —	Forward	22.127	1.030	0.670	15.27	17.75
FAPbI ₃ -before	Reverse	0.379	0.312	0.252	0.03	0.03
	Forward	0.339	0.334	0.306	0.03	0.05
FAPbI ₃ -after	Reverse	21.840	1.062	0.766	17.76	17 40
	Forward	21.907	1.054	0.737	17.03	17.40
EAPbI ₃ -before	Reverse	0.202	0.268	0.250	0.01	0.02
	Forward	0.218	0.277	0.283	0.02	0.02
EAPbI ₃ -after	Reverse	18.600	1.071	0.654	13.02	12 14
	Forward	18.632	0.932	0.648	11.25	12.17
MAPbI ₃ (E)-after ^a _	Reverse	20.871	1.096	0.722	16.52	14 49
	Forward	20.871	1.012	0.590	12.46	14,47

Table S4. Photovoltaic parameters of best performing devices with MAPbI₃, FAPbI₃ and EAPbI₃ films before and after stamping in the normal planar structure of FTO/SnO₂/perovskite/spiro-MeOTAD/Ag.

^aThe J-V curve was not presented in the main text.

Table S5. Peak position and intensity of PL spectra for the $EA_{1-x}MA_xPbI_3$ perovskite films and the stamped $EAPbI_3$ film. The $EA_{1-x}MA_xPbI_3$ perovskite films were prepared from the solution containing (1-x)EAI and xPbI_2.

EA _{1-x} MA _x PbI ₃	Peak1 (nm)	FWHM	Peak2 (nm)	Peak Intensity	FWHM
x = 0	486	13.7849	586	6290	-
x = 0.05	488	10.5686	684	14600	141.164
x = 0.10	488	11.1176	694	39620	107.779
x = 0.15	488	10.5816	694	113400	90.5275
x = 0.20	486	11.3713	740	262060	68.7557
x = 0.25	486	11.8086	746	309480	54.0379
x = 0.30	486	11.6415	750	216770	52.3104
x = 0.40	486	12.4091	752	232340	52.3964
x = 0.50	486	9.55349	758	124020	44.3932
Stamping	-	_	762	1155060	46.0027

Figure S1. (a) Digital photographs of MAPbI₃ and FAPbI₃ before (up) and after (down) stamping method. (b) Digital photographs of MAPbI₃ and EAPbI₃ before (up) and after (down) stamping method. Insert images (down) are top view of the corresponding after stamping films.

Figure S2. (a) Schematic illustration of fabricating process of "SKKU" letter patterned α -FAPbI₃ on δ -FAPbI₃ film. Insert "SKKU" mask between the MAPbI₃ and FAPbI₃ and then stamping. In the mask empty "SKKU" area, FAPbI₃ change the phase from δ to α -phase. (b) Photograph of "SKKU" patterned phase FAPbI₃ film on glass substrate (right) and the corresponding stamped MAPbI₃ film (left).

Figure S3. Digital photographs of (a) the as-prepared (left) and the 8-month-aged (right) $FAPbI_3(M)$ -after film. (b) Comparison of digital photographs of the 8-month-aged $MAPbI_3(M)$ -after (left) and $FAPbI_3(M)$ -after film. The films were stored in ambient condition with relative humidity of 30% ~ 40% and temperature of about 25 °C.

Figure S4. (a) Digital photographs of 10 cm×10 cm size MAPbI₃ film (left) stamped with FAPbI₃ film (right). (b) Digital photographs of 10 cm×10 cm size MAPbI₃ film (left) stamped with EAPbI₃ film (right). Stamping condition was the same as small size.

Figure S5. XRD patterns of MAI-PbI₂-DMSO powder, as-coated MAPbI₃ film, MAPbI₃(glass)-after, MAPbI₃(F)-after and MAPbI₃(F)-after-with-further-annealing. MAI-PbI₂-DMSO powder was obtained by scratching and vacuum drying the MAPbI₃ adduct film. As-coated MAPbI₃ film represents as-coated MAPbI₃ film without annealing. MAPbI₃(glass)-after stands for the MAPbI₃ film stamped with bare glass without counterpart perovskite film. MAPbI₃(F)-after represents the MAPbI₃ film stamped with FAPbI₃ film. MAPbI₃(F)-after-with-further-annealing was prepared by further annealing MAPbI₃(F)-after film at 100 °C for 10 min.

Figure S6. FAPbI₃ phase transition check after stamping with various films under different annealing conditions. Schematic illustration of different fabrication processes and counterpart perovskite materials along with digital photographs of the resulting films to verify the phase transition mechanism of FAPbI₃. (a) MAPbBr₃-DMSO adduct film prepared at 65 °C for 1 min was stamped with FAPbI₃-before. (b) As-coated FAPbI₃ without pre-annealing was stamped with FAPbI₃-before. (d) Non-pre-annealed MAPbI₃ film prepared from precursor solution without DMSO was stamped with FAPbI₃-before. (d) Non-pre-annealed MAPbI₃ film prepared from precursor solution without DMSO was stamped with FAPbI₃-before with longer annealing time of 10 min was stamped with MAPbI₃-before. (f) FAPbI₃ film was fabricated from FAPbI₃ precursor solution with 0.1 mole excess MAI and annealed at 100 °C for 10 min. Except for (c), $\delta \rightarrow \alpha$ phase transition occurred at all conditions.

Figure S7. (a) PL measurement condition showing light was incident on perovskite side. (b) PL spectra of FAPbI₃ perovskite films obtained from the precursor solution in mixed DMSO/DMF system and annealing at 25 °C, 60 °C and 100 °C for 10 min. (c) PL spectra of FAPbI₃ perovskite films obtained from the precursor solution in mixed DMSO/γ-butyrolactone (GBL) system and annealing at 25 °C, 60 °C and 100 °C for 10 min. The perovskite films were fabricated using the Lewis acid-base adduct method according to the method.^{S1} The excitation wavelength was 372 nm. (d) Digital photograph of 100 ^oC-annealed FAPbI₃ film from the precursor solution in DMSO/DMF. (e) Schematic illustration of host δ -FAPbI₃ and dopant α -FAPbI₃ based on film appearance observed in (d). (f) Förster resonance energy transfer from δ -FAPbI₃ (donor) to α -FAPbI₃ (acceptor).

Figure S8. (a) Digital photographs of the stamped MAPbI₃ (up) and FAPbI₃(down) films depending on the pre-annealing time of MAPbI₃. (b) The ratio of whitish area to total area of MAPbI₃ film after stamping. (c) The ratio of black area to total area of FAPbI₃ film after stamping. (d) Schematic illustration showing the DMSO played important role in forming perovskite films during stamping process.

Figure S9. Statistic photovoltaic parameters of (a) current density (J_{sc}), (b) open circle voltage (V_{oc}), (c) fill factor (FF) and (d) power conversion efficiency (PCE) for the stamped MAPbI₃ and FAPbI₃ in normal mesoscopic structure. Pre-annealing time for MAPbI₃-before was varied from 10 s to 180 s. The photovoltaic parameters were measured under AM 1.5G one sun illumination. Solid box and dashed box represent the data measured at reverse scan and forward scan, respectively. The scan rate was 0.13 V/s (voltage settling time of 200 ms).

Figure S10. (a) Photograph of MAPbI₃ film after stamping with FAPbI₃. Pre-annealing time for MAPbI₃-before was 30 s. (b) *J-V* curves of the marked green and red area.

Figure S11. Top-view SEM images with different magnification (left to right, low to high magnification) for the stamped (a) MAPbI₃ and (b) FAPbI₃. Pre-annealing time for MAPbI₃-before was 30 s. Scale bars are 1 μ m.

Figure S12. Photograph of the stamped MAPbI₃ (up) and EAPbI₃ (down) films depending on pre-annealing time of MAPbI₃. EAPbI₃ reference film was obtained from annealing as-coated EAPbI₃ at 100 °C for 10 min without stamping.

Figure S13. Reverse and forward scanned *J*-*V* curves of PSC based on the MAPbI₃(F)-after film further annealed at 100 °C for 10 min to eliminate the MAI-PbI₂-DMSO phase. Device structure was glass/FTO/SnO₂/perovskite/spiro-MeOTAD/Ag.

Figure S14. (a) XRD pattern of EAPbI₃ and MAPbI₃ before and after stamping, together with EA_{1-x}MA_xPbI₃. EA_{1-x}MA_xPbI₃ films were prepared by mixing (1-x)EAI and xMAI in PbI₂ in DMSO/DMF co-solvent, spin-coating the precursor solution and then annealing at 100 °C for 10 min without stamping. (b) Schematic compositional change after stamping via ion exchange during stamping process.

Figure S15. (a) Digital photographs of perovskite films based on $EA_{1-x}MA_xPbI_3$ and stamped EAPbI₃. (b) Steady-state PL in the short wavelength region and (c) normalized PL in the long wavelength region for perovskite films based on $EA_{1-x}MA_xPbI_3$ and stamped EAPbI₃. The excitation wavelength was 372 nm.

Figure S16. Reverse and forward scanned *J*-*V* curves of PSCs with the structure of FTO/SnO₂/perovskite/spiro-MeOTAD/Ag based on $EA_{1-x}MA_xPbI_3$ perovskite films with (a) x = 0, (b) x = 0.10, (c) x = 0.20, (d) x = 0.25, (e) x = 0.30, (f) x = 0.40 and (g) x = 0.60. (h) PCE plot with respect to x in $EA_{1-x}MA_xPbI_3$ along with PCE (star) for the stamped EAPbI₃.

Figure S17. Dark current-voltage curve of the device (FTO/perovskite/Au) with (a) reference MAPbI₃ (annealing at 65 °C for 1 min and then at 100°C for 9 min without stamping), (b) MAPbI₃ before stamping and (c) MAPbI₃ after stamping with FAPbI₃. Trap density (n_t) was estimated from the equation $V_{\text{TFL}} = en_t d^2/2\varepsilon\varepsilon_0$, where V_{TFL} is the trap-filled-limit voltage, e is the electric charge (1.602 × 10⁻¹⁹ C), ε is the dielectric constant, ε_0 is the vacuum permittivity (8.8542 × 10⁻¹⁴ F/cm) and *d* is the film thickness.

Supporting Information References

S1. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. *J. Am. Chem. Soc.* **2015**, *137*, 8696-8699.

S2. Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538-1544.

S3. V., B. V.; Ko, K. A. K.; D., M. P.; Jie, Z. Quantifying Interface States and Bulk Defects in High-Efficiency Solution-Processed Small-Molecule Solar Cells by Impedance and Capacitance Characteristics. *Prog. Photovolt. Res. Appl.* **2015**, *23*, 1526-1535.

S4. Zhumekenov, A. A.; Saidaminov, M. I.; Haque, M. A.; Alarousu, E.; Sarmah, S. P.; Murali, B.; Dursun, I.; Miao, X.-H.; Abdelhady, A. L.; Wu, T.; Mohammed, O. F.; Bakr, O. M. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. *ACS Energy Lett.* **2016**, *1*, 32-37.

S5. Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979.

S6. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

S7. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. *Phys. Rev. Lett.* **2008**, *100*, 136406.

S8. Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

S9. Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-zone Integrations. *Phys. Rev. B* **1976**, *13*, 5188-5192.