Supporting Information

High-Performance Lead-free Piezoelectrics with Local Structural Heterogeneity

Qing Liu¹, *Yichi Zhang¹**, *Jing Gao¹*, *Zhen Zhou¹*, *Hui Wang²*, *Ke Wang¹*, *Xiaowen Zhang¹*, *Longtu Li¹*, *and Jing-Feng Li¹**

¹State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

²Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China

* Corresponding author: jingfeng@mail.tsinghua.edu.cn (Jing-Feng Li) yichi-zhang@mail.tsinghua.edu.cn (Yichi Zhang)

Figure S1. The temperature stability of the d_{33}^* calculated by S_{max}/E_{max} , $E_{max}=1kV/mm$ (a) and $E_{max}=2kV/mm$ (b) for the KNNS_x-5BZ-2BNH-1Mn samples.

Figure S2. (a).Comparison of piezoelectric strain coefficient d_{33}^* from room temperature to 100 °C under certain electric fields of several representative systems. ^[1-6] (b). Comparison of the temperature dependences of large signal d_{33}^* for various ceramics as normalized to its room temperature value $d_{33}^*_{\rm RT}$. ^[3-5, 7-10]

Figure S3. (a) Unipolar electric-field-induced strain curves for the x=0.025 sample under different electric fields. (b) The converse d_{33} * at room temperature as a function of field for this work and other representative lead-free piezoelectric as well as commercial PZT (PIC 151). ^[4, 5, 7, 11-16]

To give further insights into the relationship between d_{33}^* and electric field, the converse d_{33}^* as a function of electric field was calculated by S/E according to the S-E curve measured under a triangular-shaped base waveform with $E_{\text{max}}=4$ kV/mm at room temperature for this work as shown in **Figure S3(a)**, and the relationship between d_{33}^* and electric field for other representative lead-free piezoelectrics as well as commercial PZT (PIC 151) were obtained from literature as shown in **Figure S3(b)**. ^[4, 10]

^{5, 7, 11-16]} A large d_{33}^* above 600pm/V could be obtained at the low electric field (1 kV/mm $\leq E \leq 1.5$ kV/mm) in this work , which is in analogy with PZT , while a larger driving electric field is expected in BNT-based ceramics. ^[17] BT-based ceramics show a higher level d_{33}^* but the application temperature range could be limited by their low T_c . Considering the high level of the d_{33}^* and the reliable feature in analogy with PZT, this material exhibits the promising potential in the actuator applications.

Figure S4. Planar electro-mechanical coupling factor k_p , piezoelectric voltage coefficient d_{33} and the mechanical quality factor Q_m of of poled KNNSx-5BZ-2BNH ceramics.

Figure S5. $\ln(1/\epsilon - 1/\epsilon_m)$ vs. $\ln(T - T_m)$ figures of the KNNS_x-BBNZH-1Mn samples for

determining the calculated degree of diffuseness γ .

Figure S6. The temperature dependence of the v_1 peak positions.

Figure S7. (a) Unipolar electric-field-induced strains under different electric fields $(E_{max}=1.5kV/mm \text{ and } 2kV/mm)$ in the temperature range 20-125°C for the x=0.025 sample. (b) Bi-polar electric-field-induced strain curves of the x=0.025 sample under a triangular-shaped base waveform with a maximum electric field 2kV/mm.

Figure S8. *P-E* loops for x=0.025 sample under electric fields with E_{max} =1.5 kV/mm (a) and E_{max} = 2 kV/mm.

Figure S9. (a) $d_{33}^{*}(E)$ hysteresis loops at different temperatures for the *x*=0.025 sample.(b) $\varepsilon_{\rm r}$ -*E*_{bias} curves at different temperatures.(c) Summary of the temperature dependence of the relative dielectric coefficient $\varepsilon_{\rm r}$, remanent polarization *P*_r, $\varepsilon_{\rm r} \cdot P_{\rm r}$ and the small signal $d_{33}^{*}(E=0)$.

The small signal d_{33} exhibits a strong relationship with dielectric and ferroelectric properties as written in the equation: [1, 18-21]

$$d_{33} \sim \alpha \varepsilon_r \bullet P_r$$

The temperature dependence of small signal d_{33} is almost in tune with the variation of $\varepsilon_r \cdot P_r$. It is considered that the good thermal stability of small signal d_{33} should be attributed to the balance between reduced P_r and enhanced dielectric property due to the phase transition.

Figure S10. The S-E curves of the x=0.025 sample measured at different frequencies and electric fields.

Figure S11. Frequency dependence d_{33}^* of the optimal composition in this work compared with that of KNN-based ceramics, typical BNT-based ceramics and soft PZT as reported in References. ^[22-24]

Figure S12. Fast Fourier transform (FFT) of a selected nanosized pattern showing moiré fringes. The diffraction spot indicated by the yellow circle is corresponding to the periodicity of the fringes inside the pattern.

Reference

- [1] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K.
- Wang, J.-F. Li, Y. Gu, J. Zhu, S. J. Pennycook, Energ. Environ. Sci. 2017, 10, 528.
- [2] D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I. M. Reaney, J. Am. Ceram. Soc. 2017, 100, 627.
- [3] M.-H. Zhang, K. Wang, Y.-J. Du, G. Dai, W. Sun, G. Li, D. Hu, H. C. Thong, C.
 Zhao, X.-Q. Xi, Z.-X. Yue, J.-F. Li, *J. Am. Chem. Soc.* 2017, 139, 3889.
- [4] K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J.-F.
- Li, J. Rödel, Adv. Funct. Mater. 2013, 23, 4079.
- [5]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, *Nature* 2004, 432, 84.
- [6] J. Zhang, Z. Pan, F.-F. Guo, W.-C. Liu, H. Ning, Y. Chen, M.-H. Lu, B. Yang, J.
- Chen, S.-T. Zhang, Nat. commun. 2015, 6.
- [7] J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, J. Mater. Chem. C 2015, 3, 8780.
- [8] S.-T. Zhang, A. B. Kounga, E. Aulbach, J. Appl. Phys 2008. 103(3), 034108.
- [9]D. Wang, Y. Fotinich, G.P. Carman, J. Appl. Phys. 1998. 83(10), 5342-5350.
- [10] L.-F. Zhu, B.-P. Zhang, L. Zhao and J.-F. Li, J. Mater. Chem. C, 2014, 2, 4764.
- [11]M. Senousy, R. Rajapakse, D. Mumford, M. Gadala, *Smart Mater. Struct.* 2009, 18, 045008.
- [12] R. Dittmer, W. Jo, J. Daniels, S. Schaab, J. Rödel, J. Am. Ceram. Soc. 2011, 94, 4283.

- [13] A. Hussain, J. U. Rahman, A. Zaman, R. A. Malik, J. S. Kim, T. K. Song, W. J.Kim, M. H. Kim, *Mater. Chem. Phys.* 2014, 143, 1282.
- [14] W. Jo, E. Erdem, R.-A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rödel,*J. Appl. Phys.* 2010, 108, 014110.
- [15] M. Acosta, N. Novak, W. Jo, J. Rödel, Acta Mater. 2014, 80, 48.
- [16]Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, ACS Appl. Mater. Int. 2016, 8, 7257.
- [17] M. Acosta, L. A. Schmitt, L. Molina Luna, M. C. Scherrer, M. Brilz, K. G.
 Webber, M. Deluca, H. J. Kleebe, J. Rödel, W. Donner, *J. Am. Ceram. Soc.* 2015, 98, 3405.
- [18]K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 2016, 28, 8519.
- [19] J. Wu, D. Xiao, J. Zhu, Chem. Rev. 2015, 115, 2559.
- [20] X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 2014, 136, 2905.
- [21]T. R. Shrout, S. J. Zhang, J. Electroceram. 2007, 19, 113.
- [22]J. J. Zhou, K. Wang, F. Li, J. F. Li, X. W. Zhang, Q. M. Wang, J. Am. Ceram. Soc.2013, 96, 519.
- [23] W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. *Electroceram.* 2012, 29, 71.
- [24]K. Wang, J.-F. Li, J.-J. Zhou, Appl. Phys. Express 2011, 4, 061501.