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S1. Ultrashort mean free path

The line broadening of the SED as the temperature increases reveals that some acoustic

modes retain a well-defined wave nature, while the wave nature of the higher frequency

optical modes is lost. Evidence for this is shown in Figure 2(d) by comparison of the modal

mean free time to the wave period. In Figure S1 we further compare the modal mean free

path to the modal wavelength for TA modes. For these modes, the mean free paths are

similar to, and in some cases smaller than, the corresponding wavelengths.
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Figure S1. The mean free path of TA modes obtained by fitting SED results, in comparison to

recent experimental measurements (Ref. 24) and corresponding wavelengths. These modes along

Γ → X exhibit mean free paths similar to or even shorter than their wavelengths.
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S2. Origins of low acoustic mode group velocities

The low group velocities exhibited by the acoustic modes in MAPbI3 compared to silicon

in principle can arise from soft bonding and/or heavy atomic masses, both of which play

a role here. For instance, near Γ the group velocity can be related to the elastic constants

and mass density. For cubic crystals, from the continuum perspective the simplest cases

for longitudinal modes are v[010] =
󰁳

C11/ρ, v[110] =
󰁳

(C11 + C12 + 2C44)/ρ, and v[111] =
󰁳

(C11 + 2C12 + 4C44)/ρ. Thus lower p-wave speeds might suggest greater mass density ρ

and/or smaller elastic constants Cij. The calculated mass densities for these these cubic

materials are 6187.0 kg/m3, 7194.1 kg/m3, 2235.7 kg/m3, so the contribution of the mass

density differences to the low group velocities is around
󰁳

ρperovskite/ρsilicon ∼ 1.7. Meanwhile

the elastic constants computed using density functional theory are shown in Table S1. The

contribution of the elastic constant differences to the low group velocities for the [110]

direction is around
󰁳

(C11 + C12 + 2C44)silicon/(C11 + C12 + 2C44)perovskites ∼ 3.5. The two

effects combined together give estimated differences in group velocity of ∼ 1.7 × 3.5 ≈ 6,

with the small elastic constants appearing to show a somewhat larger influence here.

Table S1. Lattice constants and elastic constants (C11, C12 and C44) calculated by density func-

tional theory.

material systems
lattice constant (Å) elastic constants (GPa)

a0 C11 C12 C44

Si 5.43 159.21 62.59 75.69

CsPbI3 6.62 21.56 4.02 3.46

MAPbI3 6.60 24.84 6.48 3.99
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S3. Perturbation of electronic charge distribution due to Pb/Si displacement

(a) (b) (c)

Figure S2. The change in electron density due to displacement of a lead (silicon) atom in (a)

MAPb3, (b) CsPb3 and (c) silicon. The displacement is 5% of corresponding lattice constant. The

disturbance of electron distribution due to such lattice perturbation is long range in perovskites

(a-b) but localized in silicon (c).

The main text considers the perturbation to the electronic charge distribution due to the

displacement of one Pb atom in MAPbI3 and CsPbI3 by 5% of the lattice constant, and

shows that it is long ranged. For comparison, the perturbations in the charge density for

the two perovskites and for silicon is compared in Figure S2. In contrast to disturbances in

perovskites that span several unit cells, for silicon the perturbations are localized to within

one cubic (8 atom) unit cell.

Table S2. Born effective charges for Si, PbTe, CsPbI3 and MAPbI3. The results for Si and PbTe

compare well with the published results in Refs. 1 and 2.

material systems
Born effective charge

Z∗ (e)

Si 0.0 (Si)

PbTe 5.74 (Pb) -5.74 (Te)

CsPbI3 4.76 (Pb) -0.77 (I)

MAPbI3 4.95 (Pb) -0.75 (I)

The long-range interactions in the halide perovskites result from the long-tail character
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of coulombic interactions, and are universal to all heteropolar materials (e.g., Refs. 52-

56). Common to such materials, these interactions lead to high electronic polarizability,

dielectric constants, and Born effective charges. In Table S2, we present our calculated

Born effective charges based on density functional perturbation theory, for the two halide

perovskites compared to Si and PbTe. The unit cells for these materials are cubic, so

the diagonal components of the Born effective charge tensor are all equivalent and the off-

diagonal components are zero. In the two halide perovskites, the Born effective charges of

Pb are comparable to that of PbTe, indicated of the similar chemistry of resonance bonding

in these ionic compounds.
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S4. Bonding nature in perovskites
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Figure S3. Total and projected band structure for MAPbI3. The top valence bands are formed

by Pb-6s2, Pb-6p2 and I-5p6 orbitals.
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Figure S4. (a-c) Projected density of states to s and p orbitals of each atom. The bands around

valence band maximum in perovskites are composed of Pb-s and dominantly I-p orbital electrons.

Figure S3 shows the electronic band structure for MAPbI3. The size of each data point

indicates the magnitude of the projection of the Kohn-Sham eigenfunctions onto specified

atomic orbitals, with orange demoting p-orbitals and blue s-orbitals. Based on the band

structure, the topmost valence bands are dominated by I p states mixed in with Pb s and
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Pb p states. Within the valence bands, the Pb 6s bands shown in blue and the Pb 6p bands

shown in orange are separated by around 4–5 eV, indicating a weak sp-hybridization in the

PbI6 octahedral framework. The flat, non-dispersive MA orbitals overlap energetically only

with the deeper inorganic PbI6 framework orbitals, which can also be observed from the

projected density of states in Figure S4 (a-c).
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S5. Softening of optical modes on diatomic chains with second-nearest-neighbor

interactions

Here we use a diatomic chain model to theoretically demonstrate the softening of optical

modes due to the presence of long-range interactions as discussed in the main manuscript.

The chain model, as illustrated in Figure S5(a), includes two types of atoms, with masses

m1 and m2 respectively. The interactions between atoms of differing types (m1 and m2)

in i-th neighboring cell are represented by force constants αi. We only consider α1 and α2

here. The interactions between atoms of the same type m1 in the second-nearest-neighbor

cell are denoted by β1; similarly interactions between atoms of the same type m2 in the

second-nearest-neighbor cell are denoted by β2.
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Figure S5. (a) The diatomic chain model taking into account second-nearest-neighbor interactions.

(b) Dispersion relation for varying combinations of interactions. The softening of Γ-optical mode

relates only to the interactions between different atoms (α1,α2), while the long-range interactions

between atoms of the same type (β1,β2) are absent.

We start from the equation of motion for m1 and m2 in the n-th unit cell. Let the lattice

constant be a, and the displacements for m1 and m2 be u and v, then

m1
d2un

dt2
= α1(vn + vn+1 − 2un) + β1(un+1 + vn−1 − 2un) + α2(vn+1 + vn−2 − 2un) , (1)

m2
d2vn
dt2

= α1(un + un+1 − 2vn) + β2(vn+1 + vn−1 − 2vn) + α2(un+2 + un−1 − 2vn) . (2)
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Assume the harmonic solution

un = u0 exp[i(kna− ωt)] , (3)

vn = v0 exp[i(kna− ωt)] , (4)

we arrive at AU = 0, where

A11 = m1ω
2 − A′

11 , (5)

A22 = m2ω
2 − A′

22 , (6)

A12 = A∗
21 = α1 [1 + exp(−ika)] + α2 [exp(ika) + exp(−ik2a)] , (7)

A′
11 = −2(α1 + 2 sin2 ka

2
β1 + α2) , (8)

A′
22 = −2(α1 + 2 sin2 ka

2
β2 + α2) , (9)

and U = (u0, v0)
T . To obtain nontrivial solutions, the determinant |A| should vanish,

0 = |A| = m1m2ω
4 + (A′

11m2 + A′
22m1)ω

2 + (A′
11A

′
22 − |A22|2) . (10)

This leads to the dispersion relations

ω =

󰀕
1

2m1m2

[−(A′
11m2 + A′

22m1)

±
󰁳

(A′
11m2 + A′

22m1)2 − 8m1m2(A′
11A

′
22 − |A22|2)

󰁬󰀔1/2

,

(11)

which plotted in Figure S5 (b) for three sets of parameters adopted in Ref. 51. Interestingly,

the center softening can be explicitly written as

ω(k = 0) =

󰀕
2(α1 + α2)

µ

󰀖1/2

, (12)

where µ = m1m2/(m1 + m2) is the reduced mass. Note that the softening of Γ optical

modes is neutral to the interactions between atoms of the same types denoted by β1 and β2.

In the case of perovskites studied in the main text, this implies the important long-range

interactions between Pb and I p orbitals.
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