Supporting information

Highly stable single Pt atomic sites anchored on aniline-stacked graphene for the

hydrogen evolution reaction

Shenghua Ye, Feiyan Luo, Qianling Zhang, Pingyu Zhang, Tingting Xu, Qi Wang, Dongsheng He, Licheng Guo, Yu Zhang, Chuanxin He, Xiaoping Ouyang, Meng Gu,* Jianhong Liu* and Xueliang Sun*

Contents

Table and Figures

- Table S1 EXAFS fitting parameters for the Pt L₃-edges of the Pt SASs/AG and Pt/C.
- Table S2 EXAFS fitting parameters for the Pt L₃-edges of the Pt SASs/AG before and after durability testing.

Figure S1 TEM and Raman spectra of graphene.

Figure S2 XPS spectra of survey, C 1s, O 1s and N 1s of graphene.

Figure S3 Water contact angle of graphene and aniline stacking graphene.

Figure S4 Photos of graphene-water suspension and aniline stacking graphene solution.

Figure S5 TEM, HRTEM, and elemental mapping images of AG.

Figure S6 XRD patterns of Pt SASs/AG and Pt/C.

Figure S7 XPS spectra of survey, C 1s, O 1s, and N 1s of AG.

Figure S8 XPS spectra of survey, C 1s, O 1s, and N 1s of Pt SASs/AG.

Figure S9 XPS spectra of survey, C 1s, O 1s, N 1s, Pt 4f and Cl 2p of Pt SASs/AG before microwave irradiation.

Figure S10 Extended XAFS spectra of Pt SASs/AG, Pt/C, and Pt foil.

Figure S11 LSV curves of Pt SASs/AG prepared by different volumes of H₂PtCl₆ solution.

Figure S12 LSV curves of Pt SASs/AG and Pt/C before and after iR correction.

Figure S13 TEM images of Pt/C before and after durability test.

Figure S14 TEM and AC HAADA-STEM images of Pt SASs/AG after durability test.

Figure S15 XANES and FT-EXAFS of the Pt L₃-edge of Pt SASs/AG before and after durability testing (without phase correction) and corresponding EXAFS fitting curve of Pt SASs/AG after durability testing.

Figure S16 HER performances of Pt SASs/AG and Pt/C in 1 M KOH solution.

Figure S17 DFT calculation models (side views) of Pt (111), Pt_{ab}/G and Pt SASs/AG.

Figure S18 Total DOS of Pt (111), Pt_{ab}/G and Pt SASs/AG.

Figure S19 Pt (111), Pt_{ab}/G and Pt SASs/AG with the H absorption model for the DFT calculations.

Table

Table S1. EXAFS fitting parameters for the Pt L₃-edges of the Pt SASs/AG and Pt/C.

Sample	path	Ν	R (Å)	$\Sigma/10^{-3}\text{\AA}^2$	$\Delta E_0 (eV)$	R factor/10 ⁻³
Pt SASs/AG	Pt–N	4.3	2.03	7.4	14.7	4.0
Pt/C	Pt–Pt	12.0	2.76	5.0	8.5	2.4

Table S2. EXAFS fitting parameters for the Pt L3-edges of the Pt SASs/AG before and after durability testing.

Sample	path	Ν	R (Å)	$\Sigma/10^{-3}\text{\AA}^2$	ΔE_0 (eV)	R factor/10 ⁻³
As-prepared Pt SASs/AG	Pt-N	4.3	2.03	7.4	14.7	4.0
Pt SASs/AG after durability test	Pt–N	4.5	2.03	7.4	14.7	4.0

Figures

Fig. S1 (a) TEM image, and (b) Raman spectrum of graphene.

The low I_D/I_G and intensive 2D peaks with narrow FWHM indicate that low defect and high quality of graphene.

The oxygen in graphene is as low as 1.69 at%, and the binding energy of O 1s is located at ~532 eV, which suggests that the oxygen is originated from absorbed H_2O on the surface. Moreover, the content of nitrogen is negligible from the spectra of survey and N 1s, indicates that the graphene is pure without doping of heteroatom.

Fig. S3 Water-contact angle of (a) graphene and (b) aniline-stacked graphene.

Fig. S4 Photos of (a) graphene-water suspension and (b) aniline-stacked graphene dispersion.

Fig. S5 (a) TEM, (b) HRTEM images, and (c) elemental mapping images of C and N of AG.

Fig. S6 XRD patterns of Pt SASs/AG and Pt/C (PDF#65-2868).

Fig. S7 XPS spectra of (a) survey, (b) C1s, (c) O1s, and (d) N 1s of AG.

Fig. S8 XPS spectra of (a) survey, (b) C1s, (c) O1s and (d) N 1s of Pt SASs/AG.

Fig. S9 XPS spectra of (a) survey, (b) C1s, (c) O1s, (d) N 1s, (e) Pt 4f and (f) Cl 2p of Pt SASs/AG before microwave irradiation.

Fig. S10 Extended XAFS spectra of Pt SASs/AG and Pt/C.

Fig. S11 LSV curves of Pt SASs/AG prepared by different volumes of H₂PtCl₆ solution with iR corrction.

Fig. S12 (a) LSV curves of Pt SASs/AG and Pt/C before the iR correction; LSV curves of (b) Pt SASs/AG, and (c) Pt/C before and after the iR correction.

Fig. S13 TEM images of Pt/C (a) before and (b) after durability testing.

Fig. S14 (a) TEM image, (b) HAADA-STEM images and corresponding elemental mapping of (c-f) C, N, Pt and (g) AC HAADA-STEM images of Pt SASs/AG after durability testing.

Fig. S15 (a) XANES and (b) FT-EXAFS of the Pt L₃-edge of Pt SASs/AG before and after durability testing (without phase correction); (c) Corresponding EXAFS fitting curve of Pt SASs/AG after durability testing.

Fig. S16 LSV curves of Pt SASs/AG and Pt/C with current density normalized to the (a) geometry area and (b) mass of Pt in 1 M KOH at 2 mV s⁻¹ respectively; (c) Tafel plots of Pt SASs/AG and Pt/C in 1 M KOH

Fig. S17 DFT calculation models (side views) of (a) Pt (111), (b) Pt_{ab}/G and (c) Pt SASs/AG.

Fig. S18 Total DOS of (a) Pt (111), (b) Pt_{ab}/G and (c) Pt SASs/AG.

Fig. S19 (a, d) Pt (111), (b. e) Pt_{ab}/G and (c,f) Pt SASs/AG with the H absorption model for the DFT calculations.