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Supplementary Note 1

Nomenclature

Indices

Sets

Parameters

𝑎𝑆𝑈𝑆𝑝𝑜𝑤𝑒𝑟 Assigned share of the safe operating space to the power sector in the United States
𝐵𝑈𝐶 Backup capacity share of dispatchable technologies that must be deployed for every 

non-dispatchable technology 
𝐶𝐴𝑃𝐶𝑈𝑅

𝑖,𝑗 Current installed capacity in 2012 of technology  in state 𝑖 𝑗

𝐶𝐴𝑃𝐹𝑖,𝑗 Capacity factor of technology  in state 𝑖 𝑗
𝐶𝐹𝑙,𝑝 Characterization factor that links life cycle inventory  to planetary boundary 𝑙 𝑝

𝐶𝑂𝐶𝐴𝑁 Canadian import price of electricity 
𝐶𝑂𝐶𝐴𝑃

𝑖,𝑗 Capital cost of technology  in state 𝑖 𝑗

𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸
𝑖 Average capital cost of technology 𝑖

𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 Fixed portion of the operating cost of technology  in state 𝑖 𝑗

𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸
𝑖 Average fixed portion of the operating cost of technology 𝑖

𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗 Variable portion of the operating cost of technology  in state 𝑖 𝑗

𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖 Average variable portion of the operating cost of technology 𝑖

𝐶𝑇𝐵 Maximum share of demand that can be met by electricity imports from Canadian 
regions

𝐷𝐸𝑀𝑗 Electricity demand in state 𝑗
𝐷𝐼𝑆𝑇

𝑗,𝑗' Transmission distance between state  and state 𝑗 𝑗'

𝐷𝐼𝑆𝑇𝐶𝐴𝑁𝑗,𝑘 Transmission distance between state  and Canadian region 𝑗 𝑘

𝐷𝑆𝐹 Demand satisfaction factor
𝐸𝑃𝑖,𝑗,𝑝 Environmental burden linked to planetary boundary  per unit of electricity 𝑝

generated with technology  in state 𝑖 𝑗

𝑖 Power technologies 
𝑗 States in the United States
𝑘 Southern Canadian regions
𝑙 Life cycle inventory entries
𝑝 Planetary boundaries

𝐵𝑇 Biomass and bio-energy with carbon capture and storage technologies 
𝐶𝑇 coal with and without carbon capture and storage technologies 
𝐼𝑅 Intermittent power technologies (i.e., photovoltaic, wind onshore and offshore, 

solar thermal and hydropower)
𝐽 States considered (i.e., regions within the United States)
𝑁𝐺𝑇 Natural gas with and without carbon capture and storage technologies
𝑁𝐶𝑗 Neighboring Canadian regions to state 𝑗
𝑁𝑈𝑗 Neighboring states to state 𝑗
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𝐸𝑃𝑖,𝑘,𝑝 Environmental burden linked to planetary boundary  per unit of electricity 𝑝

generated with technology  in Canadian region 𝑖 𝑘

𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗 Electricity generation potential with technology  in state 𝑖 𝑗

𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖 National electricity generation potential with technology  in state 𝑖 𝑗

𝐺𝑊𝑃100𝑖,𝑗 100-year global warming potential per unit of electricity generated with technology 
 in state 𝑖 𝑗

𝐺𝑉𝐴𝑈𝑆 Gross value added for the United States total economy in 2016
𝐺𝑉𝐴𝑈𝑆𝑝𝑜𝑤𝑒𝑟 Gross value added for the United States power sector in 2016
𝐻 Total number of hours in a given year, 8760 hours
𝐿𝐶𝐼𝑖,𝑗,𝑙 Life cycle inventory entry  generated by one unit of electricity supplied with 𝑙

technology  in state𝑖  𝑗
𝐿𝐶𝐼𝑖,𝑘,𝑙 Life cycle inventory entry  generated by one unit of electricity supplied with 𝑙

technology  in Canadian region𝑖  𝑘
𝑆𝑂𝑆𝑝 Full safe operating space for every planetary boundary 𝑝
𝑆𝑜𝑆𝑂𝑆𝑝 Absolute United States power sector share of the safe operating space for every 

planetary boundary 𝑝

𝑇𝐴𝑅𝐺 United States pledged target governed by the Paris Agreement in 2030
𝑇𝐿𝐹 Losses due to electricity generation, 0.62% for every 100 km
𝑃𝑜𝑝𝑈𝑆 United States population in 2016
𝑃𝑜𝑝𝑊𝑜𝑟𝑙𝑑 World population in 2016
𝜔𝑗 Cost adjustment factor corresponding to state 𝑗

Continuous variables 

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 Installed capacity of backup technology  in state 𝑖 𝑗

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 Installed capacity of standard technology  in state 𝑖 𝑗

𝐶𝑂𝑆𝑇𝑗 Total cost of electricity generation in state 𝑗

𝐶𝑂𝑆𝑇𝐶𝐴𝑁
𝑗 Cost of electricity imports from Canadian regions to state 𝑗

𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 Capital cost of electricity generation in state 𝑗

𝐶𝑂𝑆𝑇𝐹𝐼𝑋
𝑗 Fixed cost of electricity generation in state  𝑗

𝐶𝑂𝑆𝑇𝑇𝑂𝑇 Total cost of electricity generation
𝐶𝑂𝑆𝑇𝑉𝐴𝑅

𝑗 Variable cost of electricity generation in state 𝑗

𝐸𝑀𝑗 Total CO2-Eq emissions of state  following the 100-year global warming potential 𝑗

𝐸𝑃𝑇𝑂𝑇
𝑝 Total Earth-system process performance linked to planetary boundary 𝑝

𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 Electricity generation by backup technology  in state 𝑖 𝑗

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 Electricity generation by standard technology  in state 𝑖 𝑗

𝑃𝐵𝑇𝑝 Transgression of planetary boundary 𝑝

𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' Net electricity imports from state  to state 𝑗' 𝑗

𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗' Electricity transmission losses due to imports from state  to state𝑗'  𝑗

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗',𝑗

Electricity exports from state  to state 𝑗 𝑗'

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 Electricity imports from Canadian region  to state 𝑘  𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘 Electricity transmission losses due to imports from Canadian region  to state 𝑘  𝑗
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Supplementary Note 2

Methodology and data sources: ERCOM-PB mathematical formulation

This section describes the modified mathematical formulation of the Emissions Reduction 

Cooperation Model (ERCOM)1 that incorporates planetary boundaries, henceforth called ERCOM-PB. 

We also highlight the data sources used in the original ERCOM (Supplementary Table 1). The work by 

Galán-Martín et al.1 offers further details about ERCOM’s assumptions and data sources.

Here, we extend the original ERCOM1 by incorporating additional equations and constraints 

that include planetary boundaries into the model. In this section, we describe ERCOM-PB, which 

contains blocks of equations characterizing environmental burdens, planetary boundaries, load-

meeting constraints and equations required to assess the cost of electricity generation. ERCOM can 

be solved following a cooperative and non-cooperative mode between states1, yet for simplicity, this 

contribution deals only with the full cooperative mode. Thereby, the results shown in this paper 

represent an upper bound on the economic and environmental benefits that could be realized. Only 

the equations and constraints related to the full cooperative mode are described here; the interested 

reader is referred to the work by Galán-Martín et al.1 for further details on cooperation-related 

equations.

Greenhouse gas emissions constraints

The United States (US) has pledged to reduce its greenhouse gas emissions by 26-28% in 2025 

compared to the 2005 levels using the 100-year Global Warming Potential (GWP100) (US Intended 

Nationally Determined Contribution (INDC) under the Paris Agreement 2 ˚C target2). Projecting this 

pledged mitigation effort linearly, as suggested by the published US INDC2, results in a reduction target 

of 39% in 2030 compared to the 2005 levels. In this work, we assume that the reduction has to be met 

jointly by the US as a whole. States can, therefore, trade electricity or dispatchable resources to 

achieve the US Paris Agreement commitment. This constraint is only enforced in the Paris Agreement 

solution (S2) as follows: 

∑
𝑗

𝐸𝑀𝑗 ≤ 𝑇𝐴𝑅𝐺
(SE1)

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 Electricity exports from Canadian region  to state 𝑘  𝑗

𝑊𝑇 Total weighted transgression of planetary boundaries by the United States power 
sector share of the safe operating space
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where  is a continuous variable that represents the total CO2-eq (as per the used GWP100 𝐸𝑀𝑗

indicator) emitted by state  and  is the US emissions reduction pledge governed by the Paris 𝑗 𝑇𝐴𝑅𝐺

Agreement 2 ˚C target.

CO2-eq emissions are calculated based on the total electricity generated by every technology 

in each state as follows:

𝐸𝑀𝑗 = ∑
𝑖

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 𝐺𝑊𝑃100𝑖,𝑗) + ∑

𝑖
(𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 𝐺𝑊𝑃100𝑖,𝑗)         ∀𝑗 (SE2)

where  is the standard electricity generation with technology  in state ,  is the 𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 𝑖 𝑗 𝐺𝑊𝑃100𝑖,𝑗

GWP100 environmental impact per unit of electricity generated with technology  in state  and 𝑖 𝑗

 is the backup electricity generation with technology  in state . Note that constraints (SE1) and 𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 𝑖 𝑗

(SE2) are used only when the Paris Agreement solution (S2) is computed.

Load meeting constraints

Electricity generation is limited by the generation potential available for each technology and state as 

follows:

𝐺𝐸𝑁ST𝑖,𝑗 + 𝐺𝐸𝑁BU𝑖,𝑗 ≤ 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗          ∀𝑗,𝑖 ≠ 𝑐𝑜𝑎𝑙,𝑐𝑜𝑎𝑙 𝐶𝐶𝑆,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝐶𝐶𝑆, 𝑏𝑖𝑜𝑚𝑎𝑠𝑠, 𝐵𝐸𝐶𝐶𝑆(SE3)

where  is the electricity generation potential for technology  in state . The constraint (SE3) is 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗 𝑖 𝑗

applicable for all technologies except for those that share the same energy feedstock, namely coal and 

coal with Carbon Capture and Storage (CCS), natural gas with and without CCS as well as biomass and 

Bio-energy with CCS (BECCS). These technologies are modeled as follows:

∑
𝑖 ∈ 𝐶𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖',𝑗

         ∀𝑗,𝑖' = 𝑐𝑜𝑎𝑙 (SE4)

∑
𝑖 ∈ 𝑁𝐺𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖',𝑗

         ∀𝑗,𝑖' = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 (SE5)

∑
𝑖 ∈ 𝐵𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖',𝑗

         ∀𝑗,𝑖' = 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (SE6)

where the sets ,  and  represent coal-, natural gas- and biomass-powered technologies, 𝐶𝑇 𝑁𝐺𝑇 𝐵𝑇

respectively. Constraints (SE4), (SE5) and (SE6) ensure that technologies that share the same tradable 

energy feedstock do not exceed certain sensible limits on the generation potential in a given state. 

Such tradable energy resources are also bounded by their national availability, as stated in constraints 

(SE7-9).
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∑
𝑗

∑
𝑖 ∈ 𝐶𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖'

        ∀ 𝑖' = 𝑐𝑜𝑎𝑙 (SE7)

∑
𝑗

∑
𝑖 ∈ 𝑁𝐺𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖'

        ∀ 𝑖' = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 (SE8)

∑
𝑗

∑
𝑖 ∈ 𝐵𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖'

        ∀ 𝑖' = 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (SE9)

Installed capacity and electricity generation, both standard and backup, are linked as follows:

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 ≤ 𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗 𝐶𝐴𝑃𝐹𝑖,𝑗𝐻        ∀𝑖,𝑗 (SE10)

𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 = 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗 𝐶𝐴𝑃𝐹𝑖,𝑗𝐻 ∀𝑖,𝑗 (SE11)

where  is a continuous variable that represents the standard installed capacity for technology  𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 𝑖

in state ,  is also a continuous variable that provides the backup installed capacity for 𝑗 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗

technology  in state ,  denotes the capacity factor used to link the capacity to the generation 𝑖 𝑗 𝐶𝐴𝑃𝐹𝑖,𝑗

with technology  in state  and  is a scalar that represents the total number of hours of operation in 𝑖 𝑗 𝐻

a year. The capacity factor represents the ratio between the actual and potential electricity output. 

This parameter limits the amount of electricity generated by each technology by considering those 

time periods in which the power plant is not operating. While the standard electricity generation is 

bounded by an inequality constraint (SE10), the backup electricity generation is modeled via an 

equality constraint (SE11) that ensures the grid reliability.

According to the US Energy Protection Agency, new nuclear power plants shall not be built3. 

This policy is modeled as follows:

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗 = 𝐶𝐴𝑃𝐶𝑈𝑅
𝑖,𝑗          ∀𝑗,𝑖 =  𝑛𝑢𝑐𝑙𝑒𝑎𝑟 (SE12)

where  is a parameter denoting the current installed nuclear capacity. 𝐶𝐴𝑃𝐶𝑈𝑅
𝑖,𝑗

The integration of more intermittent energy resources into the grid inevitably decreases its 

reliability. Many studies dealt with this modeling issue. One way to model this is to assign each 

technology an inertia potential, which is lower for intermittent technologies than for those that are 

not intermittent4. Thereafter, the grid reliability is maintained by setting a global system inertia 

potential as a lower bound in the model, which should be met by the grid4. Similarly, we use the 

backup generation methodology to ensure that for every unit of electricity generated from a non-

dispatchable resource, a certain proportion has to be generated with a dispatchable resource5-7. Both 

methodologies serve the same purpose, namely to maintain the reliability of the grid. Furthermore, 



7

both methodologies indirectly increase the marginal cost of production, particularly if the 

dispatchable technology chosen to support the grid is more expensive than the non-dispatchable one. 

Dispatchable technologies include coal, coal with CCS, natural gas, natural gas with CCS, nuclear, 

biomass, BECCS and geothermal. On the other hand, non-dispatchable technologies include both 

rooftop and rural solar Photovoltaic (PV), both wind onshore and offshore, solar thermal and 

hydropower.

∑
𝑖 ∉ 𝐼𝑅

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 = 𝐵𝑈𝐶 ∑

𝑖 ∈ 𝐼𝑅

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 ∀𝑗 (SE13)

The reliability of the grid is modeled using equation (SE13), where  is a scalar denoting the 𝐵𝑈𝐶

capacity share needed by dispatchable technologies for every unit of a non-dispatchable technology 

and  is the set of non-dispatchable technologies. We also ensure that non-dispatchable technologies 𝐼𝑅

cannot generate backup electricity using equation (SE14).

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 = 0         ∀𝑗,𝑖 ∈ 𝐼𝑅 (SE14)

Electricity can only be traded between neighboring states and Canadian regions as follows:

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗' = 0         ∀𝑗,𝑗' ∉ 𝑁𝑈𝑗 (SE15)

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 = 0         ∀𝑗,𝑘 ∉ 𝑁𝐶𝑗 (SE16)

where  represents electricity being imported by state  from state ,  is the 
𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗' 𝑗 𝑗' 𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘

amount of electricity being imported by state  from the Canadian region ,  is the set of 𝑗 𝑘 𝑁𝑈𝑗

neighboring states  to state  and  is the set of neighboring southern Canadian regions  to state 𝑗' 𝑗 𝑁𝐶𝑗 𝑘

.𝑗

We also model the total electricity losses due to transmission as follows:

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗' = 𝑇𝑅𝐷𝐷𝐸𝑆𝑇

𝑗,𝑗' + 𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗'          ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (SE17)

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 = 𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇

𝑗,𝑘 + 𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘          ∀𝑗,𝑘 ∈ 𝑁𝐶𝑗 (SE18)

where  is the total amount of electricity received at the final destination  from state  and 
𝑇𝑅𝐷𝐷𝐸𝑆𝑇

𝑗,𝑗' 𝑗 𝑗'

 is the total amount of electricity losses due to electricity transmission from state  to state , 
𝑇𝑅𝐷𝐿𝑂𝑆𝑆

𝑗,𝑗' 𝑗' 𝑗

 is the total amount of electricity received at the final destination  from the neighboring 𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 𝑗

Canadian region  and  is the total amount of electricity losses due to transmission from 𝑘 𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘

the neighboring Canadian region  to state .𝑘 𝑗
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The total amount of electricity losses is modeled as a function of the distance and the amount 

of electricity being transmitted between regions as follows:

𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗' = 𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗' 𝐷𝐼𝑆𝑇𝑗,𝑗'𝑇𝐿𝐹        ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (SE19)

𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘 = 𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺

𝑗,𝑘 𝐷𝐼𝑆𝑇𝐶𝐴𝑁𝑗,𝑘𝑇𝐿𝐹        ∀𝑗,𝑘 ∈ 𝑁𝐶𝑗 (SE20)

where  is the distance between state  and neighboring state ,  is the distance 
𝐷𝐼𝑆𝑇

𝑗,𝑗' 𝑗 𝑗' 𝐷𝐼𝑆𝑇𝐶𝐴𝑁𝑗,𝑘

between state  and neighboring Canadian region  and  is a scalar that links the electricity losses 𝑗 𝑘 𝑇𝐿𝐹

to the transmission distance. 

To be consistent with the current energy market structure, total electricity imports from 

neighboring Canadian regions and states cannot exceed a given share of the total demand as follows:

∑
𝑗,𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 ≤ 𝐶𝑇𝐵∑

𝑗

𝐷𝐸𝑀𝑗 (SE21)

where  is a parameter that represents an upper bound on the total electricity demand that can be 𝐶𝑇𝐵

met by imports and  is the total electricity demand in state . 𝐷𝐸𝑀𝑗 𝑗

To prevent states from acting as transmission nodes (i.e., import more electricity than the 

amount consumed to ultimately sell it), we constrain the total imports by each state by its total 

electricity demand (SE22).

∑
𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' + ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 ≤ 𝐷𝐸𝑀𝑗        ∀𝑗

(SE22)

The domestic electricity generation plus the imports and minus the total exports must satisfy 

the total demand for that state adjusted by a reliability factor as follows:

∑
𝑖

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + ∑

𝑖 ∉ 𝐼𝑅

𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 + ∑

𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' + ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 ‒ ∑

𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗',𝑗

= 𝐷𝐸𝑀𝑗𝐷𝑆𝐹        ∀𝑗

(SE23)

where  is the demand satisfaction factor required to maintain the grid reliability forcing the system 𝐷𝑆𝐹

to deliver a reserve margin above the electricity demand.

Economic objective function and constraints

The objective function seeks to minimize the total cost of electricity generation as follows:
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𝐶𝑂𝑆𝑇𝑇𝑂𝑇 = ∑
𝑗

𝐶𝑂𝑆𝑇𝑗 (SE24)

where  is the total cost of electricity supply to the US and  is the cost of electricity 𝐶𝑂𝑆𝑇𝑇𝑂𝑇 𝐶𝑂𝑆𝑇𝑗

generation in state . The cost of electricity generation is structured as follows:𝑗

𝐶𝑂𝑆𝑇𝑗 = 𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 + 𝐶𝑂𝑆𝑇𝐹𝐼𝑋

𝑗 + 𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗 + 𝐶𝑂𝑆𝑇𝐶𝐴𝑁

𝑗 ∀𝑗 (SE25)

where  is the installed capacity cost in state ,  is the annual fixed cost in state , 𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 𝑗 𝐶𝑂𝑆𝑇𝐹𝐼𝑋

𝑗 𝑗

 is the variable operating cost in state  and  is the electricity import cost from the 𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗 𝑗 𝐶𝑂𝑆𝑇𝐶𝐴𝑁

𝑗

neighboring Canadian regions to state . The installed capacities of both standard and backup 𝑗

technologies determine the state capital cost as follows:

𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 = ∑

𝑖
((𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 )𝐶𝑂𝐶𝐴𝑃

𝑖,𝑗 𝐶𝐴𝑃𝐹𝑖,𝑗𝐻) ∀𝑗 (SE26)

where  is a parameter that represents the unitary capital cost of technology  in state . The fixed 𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗 𝑖 𝑗

capacities of both standard and backup technologies determine the state annual fixed cost as follows:

𝐶𝑂𝑆𝑇𝐹𝐼𝑋
𝑗 = ∑

𝑖
((𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 )𝐶𝑂𝐹𝐼𝑋

𝑖,𝑗 𝐶𝐴𝑃𝐹𝑖,𝑗𝐻) ∀𝑗 (SE27)

where  is a parameter that represents the unitary annual fixed operating cost of technology  in 𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 𝑖

state . The variable costs of both standard and backup technologies determine the state variable 𝑗

operating cost as follows:

𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗 = ∑

𝑖
((𝐺𝐸𝑁𝑆𝑇

𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 )𝐶𝑂𝑉𝐴𝑅

𝑖,𝑗 ) ∀𝑗 (SE28)

where  is a parameter that represents the variable cost of technology  in state . The total 𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗 𝑖 𝑗

electricity imports from neighboring Canadian regions provide the total electricity import cost as 

follows:

𝐶𝑂𝑆𝑇𝐶𝐴𝑁
𝑗 = ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 𝐶𝑂𝐶𝐴𝑁 ∀𝑗 (SE29)

where  is a scalar that represents the Canadian unitary selling price of electricity. 𝐶𝑂𝐶𝐴𝑁

Planetary boundaries constraints and objective function
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Our work characterizes planetary boundaries and includes them into energy systems models. Each 

Earth-system process required to assess the performance of the grid in terms of planetary boundaries 

is modeled as follows:

𝐸𝑃𝑇𝑂𝑇
𝑝 = ∑

𝑖,𝑗
((𝐺𝐸𝑁𝑆𝑇

𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 )𝐸𝑃𝑖,𝑗,𝑝) + ∑

𝑗,𝑘

(𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 𝐸𝑃

𝑖',𝑘,𝑝
)         ∀𝑝,𝑖' = ℎ𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟 (SE30)

where  represents the total performance of each Earth-system process linked to planetary 𝐸𝑃𝑇𝑂𝑇
𝑝

boundary  and  is a parameter denoting the total environmental burden linked to planetary 𝑝 𝐸𝑃𝑖,𝑗,𝑝

boundary  per unit of energy generated with technology  in state  and  is a parameter 𝑝 𝑖  𝑗 𝐸𝑃
𝑖',𝑘,𝑝

denoting the total environmental burden linked to planetary boundary  of technology  in Canadian 𝑝 𝑖'

region . Note electricity imports from neighboring Canadian regions are assumed to be generated  𝑘

from hydropower plants1 as shown in Equation (SE30). The environmental burden must be 

determined from the life cycle inventory entries associated with each technology and region, which 

provide the life cycle emissions to air, soil and water per unit of electricity generated by that specific 

technology as follows:

𝐸𝑃𝑖,𝑗,𝑝 = ∑
𝑙

(𝐶𝐹𝑙,𝑝 ∙ 𝐿𝐶𝐼𝑖,𝑗,𝑙)         ∀𝑝,𝑖,𝑗 (SE31)

𝐸𝑃𝑖,𝑘,𝑝 = ∑
𝑙

(𝐶𝐹𝑙,𝑝 ∙ 𝐿𝐶𝐼
𝑖',𝑘,𝑙

)         ∀𝑝,𝑘,𝑖' = ℎ𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟 (SE32)

where  is the characterization factor that links life cycle inventory entry  to planetary boundary 𝐶𝐹𝑙,𝑝 𝑙

,  is the life cycle inventory entry  generated by one unit of electricity supplied with technology 𝑝 𝐿𝐶𝐼𝑖,𝑗,𝑙 𝑙

 in state  and  is the life cycle inventory entry  generated by one unit of electricity supplied 𝑖  𝑗 𝐿𝐶𝐼
𝑖',𝑘,𝑙 𝑙

with technology  in Canadian region .𝑖'  𝑘

The US power sector share of the safe operating space linked to each planetary boundary 

connected to the Earth-system processes considered in this work are obtained as follows:

𝑎𝑆𝑈𝑆𝑝𝑜𝑤𝑒𝑟 =
𝑃𝑜𝑝𝑈𝑆

𝑃𝑜𝑝𝑊𝑜𝑟𝑙𝑑
∙

𝐺𝑉𝐴𝑈𝑆𝑝𝑜𝑤𝑒𝑟

𝐺𝑉𝐴𝑈𝑆 (SE33)

𝑆𝑜𝑆𝑂𝑆𝑝 = aS𝑈𝑆𝑝𝑜𝑤𝑒𝑟 ∙ SOS𝑝          ∀𝑝 (SE34)

𝐸𝑃𝑇𝑂𝑇
𝑝 ≤ 𝑆𝑜𝑆𝑂𝑆𝑝 + 𝑃𝐵𝑇𝑝         ∀𝑝 (SE35)

𝑃𝐵𝑇𝑝 ≥ 0        ∀𝑝 (SE36)

where  is the assigned share of the safe operating space to the US power sector,  is the 𝑎𝑆𝑈𝑆𝑝𝑜𝑤𝑒𝑟 𝑃𝑜𝑝𝑈𝑆

US population in 2016,  is the world population in 2016,  is the gross value added 𝑃𝑜𝑝𝑊𝑜𝑟𝑙𝑑 𝐺𝑉𝐴𝑈𝑆𝑝𝑜𝑤𝑒𝑟
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for the US power sector in 2016,  is the gross value added for the US total economy in 2016, 𝐺𝑉𝐴𝑈𝑆

 is the US power sector absolute share of the safe operating space for every planetary boundary 𝑆𝑜𝑆𝑂𝑆𝑝

,  is the full safe operating space for every planetary boundary  and  is a positive variable 𝑝 𝑆𝑂𝑆𝑝 𝑝 𝑃𝐵𝑇𝑝

that quantifies the transgression of planetary boundary . 𝑝

The total weighted transgression of every planetary boundary by its corresponding US power 

sector share of the safe operating space, which is minimized in the planetary boundaries solution (S3) 

and only quantified in the other solutions (i.e., not optimized), is obtained as follows:

𝑊𝑇 = ∑
𝑝

( 𝑃𝐵𝑇𝑝

𝑆𝑜𝑆𝑂𝑆𝑝
) (SE37)

where  is the summation of the normalized transgression of each planetary boundary  by its 𝑊𝑇 𝑝

corresponding US power sector share of the safe operating space. Equation (SE37) is, therefore, the 

objective function of the minimization problem in the planetary boundaries solution (S3).

The following models are solved in the main manuscript to obtain three solutions namely S1, 

S2 and S3:

 To compute solution S1, which corresponds to the US 2012 default developments in the power 

sector to meet the 2030 electricity demand, the share of each technology is fixed to its 2012 

level and the demand is projected to 2030.

 To compute solution S2, which represents the least cost solution that meets the US 

commitment to the Paris Agreement, we minimize equation SE24, subject to constraints (SE1-

SE29).

 To compute solution S3, which corresponds to the system minimizing the transgression of 

planetary boundaries at minimum cost, we minimize equation SE37, subject to constraints 

(SE3-SE37). We then take the value of the total normalized transgression, i.e.,  in equation 𝑊𝑇

(SE37), and define this value as an upper bound (i.e., it should never be exceeded by the 

optimal solution of the model) in another model that minimizes equation S24 subject to 

constraints (SE3-SE37). 

ERCOM-PB is modeled in the General Algebraic Modeling System (GAMS)8 version 25.0.2. It 

features 12,802 continuous variables and 8,941 constraints. The GUROBI solver version 7.5.2 was used 

to solve the linear programming model on an Intel®Core™ i7-6700 processor operating at 3.40 GHz, 

taking less than one CPU second in the different instances.

Supplementary Note 3
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Uncertainty analysis approach

We perform three cases of uncertainty analyses: 

 The first case deals with the uncertainties associated with life cycle inventory entries linked to 

planetary boundaries. Here, we assume that life cycle inventories follow a lognormal distribution 

and we solve the optimization model at every iteration. The results are shown in the figures in the 

main manuscript where each error bar represents one standard deviation.

 The second case deals with the impact of the uncertainties associated with the future Levelized 

Cost of Electricity (LCOE) values on meeting seven planetary boundaries concurrently. Here, we 

assume that LCOE values follow a uniform distribution where the ranges are reported in 

Supplementary Table 2 and solve the optimization model at every iteration. The results are shown 

in Supplementary Figure 2 and discussed in Supplementary Note 6.

 The third case deals with the impact of the uncertainties associated with the LCOE values due to 

the consideration of learning curves. To be more precise, we aim to quantify the likelihood of the 

Paris Agreement mix, solution (S2), being less expensive than the Business as Usual (BAU) mix, 

solution (S1). Here, we assume that LCOE values follow a uniform distribution where the ranges 

are tabulated in Supplementary Table 3 and perform a post-optimal analysis (i.e., optimal mixes 

are fixed to solutions S1 and S2 and then the LCOE values are varied between the current to future 

levels). The results are shown in Supplementary Figure 3 and discussed in Supplementary Note 7.

Uncertainty analysis approach corresponding to the life cycle inventory entries (results shown in the 

main body of the manuscript)

To assess the impact of the uncertainties involved in the life cycle inventory entries used to evaluate 

the performance of Earth-system processes on planetary boundaries, we generated 100 scenarios and 

solved the optimization model (i.e., ERCOM-PB) for each of them separately. Each scenario 

corresponds to a different materialization of all the uncertain parameters, i.e., life cycle inventory 

entries, simultaneously generated by applying Monte Carlo sampling on the probability distributions 

of the inventory parameters. This number of scenarios meets the Law and Kelton’s test9, that is, it 

satisfies a confidence level of 95% with a relative error below 5% defined on the optimal objective 

function value. In Figures 2, 3, 4 and 5 in the manuscript, we show the results of the uncertainty 

analysis as error bars, where each error bar represents one standard deviation. We note that we apply 

the uncertainty analysis to the three solutions analyzed in the work (i.e., S1, S2 and S3).

Following standard practices in the life cycle assessment literature, each life cycle inventory 

entry (i.e., life cycle emissions to air, soil and water associated with each technology and required to 
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evaluate their performance in terms of planetary boundaries) was assumed to follow a lognormal 

cumulative distribution function10. That is, the natural logarithm of the life cycle inventory entry  𝑙

associated with technology  in state  follows a normal distribution with mean  and standard 𝑖 𝑗 𝜇𝑙,𝑖,𝑗

deviation . The geometric distribution  of each uncertain life cycle inventory entry is obtained 𝜎𝑙,𝑖,𝑗 𝜎𝑔𝑒𝑜
𝑙,𝑖,𝑗

as follows:

𝜎𝑔𝑒𝑜
𝑙,𝑖,𝑗 =

𝑒

[ln (𝑈1,𝑙,𝑖,𝑗)]2 + [ln (𝑈2,𝑙,𝑖,𝑗)]2 + [ln (𝑈3,𝑙,𝑖,𝑗)]2 + [ln (𝑈4,𝑙,𝑖,𝑗)]2 +

[ln (𝑈5,𝑙,𝑖,𝑗)]2 + [ln (𝑈6,𝑙,𝑖,𝑗)]2 + [ln (𝑈𝑏,𝑙,𝑖,𝑗)]2          ∀𝑙,𝑖,𝑗 (SE38)

where  is the geometric standard deviation of the lognormal cumulative distribution function for 𝜎𝑔𝑒𝑜
𝑙,𝑖,𝑗

each life cycle inventory entry  of technology  in state j,  to  are the scores used in the 𝑙 𝑖 𝑈1,𝑙,𝑖,𝑗 𝑈6,𝑙,𝑖,𝑗

Pedigree matrix for each life cycle inventory entry  of technology  in state j and  is the basic 𝑙 𝑖 𝑈𝑏,𝑙,𝑖,𝑗

uncertainty factor used in the Pedigree matrix for each life cycle inventory entry  of technology  in 𝑙 𝑖

state j. Further details on all the U values can be found in the SimaPro manual11.

The standard deviation of the uncertain parameter’s natural logarithm is obtained as follows:

𝜎𝑙,𝑖,𝑗 = ln (𝜎𝑔𝑒𝑜
𝑙,𝑖 )         ∀𝑙,𝑖,𝑗 (SE39)

while the mean of the uncertain parameter’s natural logarithm  is computed from its expected 𝜇𝑙,𝑖,𝑗

value and the variable’s natural logarithm standard deviation as follows:

𝜇𝑙,𝑖,𝑗 = ln (𝐸[𝐿𝐶𝐼𝑙,𝑖,𝑗]) ‒
(𝜎𝑙,𝑖,𝑗)2

2
         ∀𝑙,𝑖,𝑗 (SE40)

where  is the expected value of the uncertain parameter (i.e., arithmetic mean), retrieved 𝐸[𝐿𝐶𝐼𝑙,𝑖,𝑗]

from life cycle assessment repositories for each life cycle inventory , technology  in state . We finally 𝑙 𝑖 𝑗

derive the random values of the life cycle inventory entries by sampling on the lognormal distribution 

with parameters  and  (  ). Note that we assume independent 𝜇𝑙,𝑖,𝑗 𝜎𝑙,𝑖,𝑗 𝐿𝐶𝐼𝑙,𝑖,𝑗~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑙,𝑖,𝑗,𝜎𝑙,𝑖,𝑗
2)

uncertain parameters, so a different seed is applied to sample each life cycle inventory entry 

separately. We applied the same approach to calculate the random life cycle inventory entries 

associated with electricity generation in neighboring Canadian regions.

Uncertainty analysis approach corresponding to the levelized cost of electricity (results shown only 

in this supplementary information and discussed in detail in Supplementary Notes 6 and 7) 

We use two sets of LCOE values to (i) asses the uncertainty associated with future LCOE on meeting 

seven planetary boundaries concurrently, i.e., solution S3, (Supplementary Table 2) and (ii) quantify 
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the impact of learning curves associated with the LCOE on the likelihood of the Paris Agreement, 

solution (S2), being more expensive than the BAU, solution (S1), (Supplementary Table 3). To this end, 

we also ran ERCOM-PB 100 times, where each run entails specific values of the LCOE of the different 

technologies within the bounds reported in Supplementary Table 2 (analysis (i)). On the other hand, 

we performed a post-optimal analysis in analysis (ii) where we fix the mixes corresponding to solutions 

S1 and S2 and then vary the LCOE values reported in Supplementary Table 3. The number of scenarios 

was defined to meet the Law and Kelton’s test9 with a confidence level of 95% and a relative error 

below 5%. The results of analysis (i) are reported in Supplementary Figure 2 and discussed in 

Supplementary Note 6. The results of analysis (ii) are reported in Supplementary Figure 3 and 

discussed in Supplementary Note 7. 

We assume that the LCOE follows a uniform distribution. To generate the Monte Carlo 

samples following a uniform distribution, two parameters are needed, namely a lower and upper 

bound for every electricity technology (Supplementary Table 2 and Supplementary Table 3). The 

probability density function for the uniform distribution can be defined as follows: 

𝑓(𝑥) = { 1
(𝑏 ‒ 𝑎)

         𝑎 ≤ 𝑥 < 𝑏

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒� (SE41)

where  is the random value,  is the lower bound (minimum LCOE value) and  is the upper bound 𝑥 𝑎 𝑏

(maximum LCOE value).

Supplementary Table 2 and Supplementary Table 3 report the bounds for the total LCOE 

values. Nonetheless, each LCOE value could be divided into (i) capital and transmission lines, (ii) fixed 

operating and maintenance and (iii) variable operating and maintenance costs. Following Galán-

Martín et al.1, we assume the portion of each of these costs stay fixed to the average values reported 

by the US Energy Information Administration (EIA)12. Consequently, at each run, we vary the total 

LCOE values and then calculate each cost type. Each cost component is needed in ERCOM-PB as the 

fixed costs are linked to the plant capacity and the variable ones are linked to electricity generation.

The LCOE value differs from one state to another due to, for example, the disparity in the 

endowment of energy sources and labor markets between states. Following Galán-Martín et al.1, we 

regionalize each random LCOE value to each state as follows:

𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗 = 𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸

𝑖 𝜔𝑗[ |𝐽|

∑
𝑗'

1
𝐶𝐴𝑃𝐹

𝑖,𝑗'

1
𝐶𝐴𝑃𝐹𝑖,𝑗]         ∀𝑖,𝑗 (SE42)
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𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 = 𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 𝜔𝑗[ |𝐽|

∑
𝑗'

1
𝐶𝐴𝑃𝐹

𝑖,𝑗'

1
𝐶𝐴𝑃𝐹𝑖,𝑗]         ∀𝑖,𝑗 (SE43)

𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗 = 𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸

𝑖 𝜔𝑗[ |𝐽|

∑
𝑗'

1
𝐶𝐴𝑃𝐹

𝑖,𝑗'

1
𝐶𝐴𝑃𝐹𝑖,𝑗]         ∀𝑖,𝑗 (SE44)

where ,  and  are the average capital, fixed operating and maintenance and 𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸
𝑖 𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖

variable operating and maintenance costs, respectively, per unit of electricity generated with 

technology ,  is the cost adjustment factor corresponding to state  and  is the cardinal (i.e., size) 𝑖 𝜔𝑗 𝑗 |𝐽|

of set  that represents the states considered in the model. 𝐽

Supplementary Note 4

Limitations and future work

The following limitations and assumptions of our work are acknowledged:

 We acknowledge that our allocation methodology assumes static shares of planetary boundaries. 

Nonetheless, those shares could be dynamic in nature based on the ‘elasticity’13 of each sector, 

that is, on its ability to reduce its burdens while maintaining a given level of outputs. For example, 

the power sector has less technological resilience towards reducing the biogeochemical Nitrogen 

(N) flow, since most of these environmental burdens are generated earlier in the supply chain. 

Meanwhile in the power sector, it might be easier to find more technological options to decrease 

its CO2 emissions, this sector could ultimately trade part of its planetary boundaries on climate 

change with the agricultural sector, if the latter shows technological resiliency to meet a stricter 

planetary boundary on biogeochemical N flow. We keep this sectoral dynamic share allocation 

process as part of the future work since the main objective of this paper is to motivate the 

incorporation of planetary boundaries into energy systems models.

 Data for applying the sharing principle chosen in this work (i.e., population and gross value added) 

should, in principle, correspond to year 2030 to reflect upon the time duration of the analysis. 

However, forecasts for sectoral gross value added for 2030 are at present unavailable. Hence, the 

latest data for population and gross value added (i.e., 2016) were used instead in the study. 

Moreover, population and gross value added vary over time and, therefore, the shares derived 

from such indicator should be updated periodically.

 According to the PB-LCIA methodology14, freshwater withdrawal (widely available in life cycle 

repositories, such as ecoinvent10, 15) is used to characterize the environmental flows related to the 
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planetary boundary on global freshwater use. Nonetheless, there could be a slight mismatch 

between freshwater consumption and freshwater withdrawal, since part of the withdrawn 

freshwater could potentially be recycled16. Unfortunately, freshwater consumption data for each 

electricity technology are currently unavailable. 

 Regional planetary boundaries were omitted from the study due to the lack of applicable life cycle 

inventory data in life cycle repositories. In addition, characterization models to quantify the 

change in biosphere integrity are currently unavailable; consequently, we omitted the two 

planetary boundaries on biosphere integrity from the analysis14. Furthermore, there is no global 

planetary boundary on atmospheric aerosol loading, although characterization factors have been 

defined for a set of substances; hence, it was also omitted in our analysis17. Lastly, due to the lack 

of a control variable and planetary boundary on the introduction of novel entities, we discarded 

this planetary boundary in the analysis17. Our method would be nevertheless able to deal with 

these planetary boundaries, once the aforementioned planetary boundaries, their associated 

characterization models and applicable life cycle inventory data become available.

Supplementary Note 5

Environmental flows contribution to the transgression of planetary boundaries

Supplementary Figure 1 shows the performance of each environmental flow linked to every planetary 

boundary for each mix relative to its corresponding downscaled planetary boundary applicable to the 

US power sector. CO2 dominates the environmental flows that cause the transgression of both climate 

change planetary boundaries and the planetary boundary on ocean acidification in both the BAU mix 

(solution S1) and the Paris Agreement mix (solution S2). In the planetary boundaries mix (solution S3), 

CO2 shows a negative contribution due to the deployment of BECCS, whereas CH4 dominates the 

positive impact on climate change and ocean acidification. 

Across all solutions, NOx and NO3
- dominate the transgression of the planetary boundary on 

global biogeochemical N flow. Freshwater causes the transgression of the planetary boundary on 

global freshwater consumption in the BAU mix (S1) as well as in the Paris Agreement mix (S2), since it 

is the only environmental flow connected to the planetary boundary on freshwater consumption. 

Stratospheric ozone depletion is transgressed only in the BAU solution (S1) due mainly to N2O 

emissions to air, which were not considered in the method we followed to translate life cycle inventory 

entries into planetary boundaries14. Therefore, we recommend the consideration of the N2O emissions 

impact on the ozone layer due to their noticeable contribution found in our work. Planetary 

boundaries on global biogeochemical Phosphorus (P) flow and land-system change are not 

transgressed across all the considered energy mixes, which reflects upon the low quantities of 
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environmental flows linked to electricity technologies that are connected to such respected planetary 

boundaries.

Supplementary Note 6

Implications on the cost of meeting planetary boundaries considering uncertainties in the future 

LCOE values (analysis (i) in Supplementary Note 3)

Since the analysis is performed in year 2030, technological improvements that would make the price 

of emerging electricity technologies more competitive could materialize. In this supplementary note, 

therefore, we analyze the uncertainties associated with the future LCOE values of all electricity 

technologies simultaneously (analysis (i)). More precisely, we are interested in evaluating the extent 

to which the uncertainties associated with the future LCOE values of all electricity technologies could 

influence the cost of meeting seven planetary boundaries concurrently. We do so by varying the LCOE 

values between the ranges reported in Supplementary Table 2 following a uniform distribution where 

we solve the optimization model at every iteration.

Supplementary Figure 2 shows the results of the uncertainty analysis of the total cost of 

electricity and the performance on each planetary boundary due to the uncertainty associated with 

the LCOE values of electricity technologies. In other words, the results describe what happens in terms 

of the total cost of electricity and performance on every planetary boundary of the solutions found 

when the LCOE values are changed in the model as a result of different materializations of the 

associated uncertainty (Supplementary Table 2). 

Our main results clearly show that BECCS power plants would play a critical role in meeting 

climate change planetary boundaries in the future; this is due to their negative life cycle CO2 footprint 

when the whole supply chain is considered. However, the future LCOE of BECCS remains uncertain18, 

particularly, when technological improvements are considered (Supplementary Table 2). Here, our 

uncertainty analysis shows that within the limits defined for the LCOE of BECCS and other electricity 

technologies, ERCOM-PB will always deploy BECCS in the planetary boundaries mix (S3) 

(Supplementary Figure 2). This is because BECCS is required to meet the CO2-driven planetary 

boundaries, defined on climate change and ocean acidification, which cannot be met with other 

technologies. This insight should encourage investors to explore pathways to decrease the cost of 

BECCS to sustain the Earth’s ecological capacity without significantly exacerbating our economic 

welfare. Overall, one standard deviation corresponds to 5% of the mean of the cost of meeting seven 

planetary boundaries concurrently, i.e., solution (S3), (Supplementary Figure 2). Therefore, our 

economic insights are robust within the assumptions highlighted in Supplementary Table 2.
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Supplementary Note 7

Likelihood of the Paris Agreement mix being more expensive than the business as usual mix: post-

optimal analysis focusing on learning curves (analysis (ii) in Supplementary Note 3)

When future energy mixes are studied, their future LCOE values should be considered to derive sound 

insights. Typically, learning curves are used to quantify the LCOE reductions for renewable 

technologies that currently might not be competitive when compared to conventional ones. Many 

studies concluded that the future LCOE of some renewable technologies (e.g., wind onshore and 

geothermal) would be more competitive than those of conventional ones (e.g., coal power plants)12, 

19. 

Here, we are interested in evaluating the extent to which the Paris Agreement mix (solution 

S2) is better in economic terms than the BAU mix (solution S1). To this end, the outcome of learning 

curves is varied by performing a post-optimal analysis on the mixes found. First, we fix the mixes found 

with the average LCOE values (third column in Supplementary Table 2). Thereafter, we vary the LCOE 

values in the ranges reported in Supplementary Table 3 following a uniform distribution where the 

maximum value corresponds to the current LCOE values20 and the minimum value corresponds to the 

expected LCOE values in the future in line with learning curve studies12. The rationale for this is to 

consider that, departing from the current cost, the technologies could evolve in different ways to 

finally reach an LCOE in between the cost today and the projected cost considering learning curves in 

the targeted year. Finally, for every scenario we divide the cost of the Paris Agreement solution (S2) 

by that of the BAU solution (S1) and show the results in Supplementary Figure 3, where a value greater 

than one indicates that the Paris Agreement solution is more expensive than the BAU solution, while 

a value less than one indicates the converse.

The Paris Agreement mix (S2) is found to be less costly than the BAU mix (S1) in 95 out of the 

100 scenarios (i.e., runs) considered (Supplementary Figure 3). This is due to the competitiveness of 

some electricity technologies in the future, primarily wind onshore and geothermal – both combined 

representing only 4% of the BAU mix compared to 32% in the Paris Agreement solution. Therefore, 

despite the uncertainty associated with the LCOE of renewable technologies in the future, the Paris 

Agreement mix remains less expensive than the BAU mix with a probability of 95%.

The economic argument of keeping existing coal power plants in the 2012 mix focuses on the 

economic advantage of some coal plants that are fully depreciated and still under operation. For 

instance, the LCOE of a fully depreciated coal power plant is around half of a new one19. LCOE values 

are designed considering a 30-year cost recovery period12; hence, when plants operate beyond such 
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period their LCOE values drop giving them an economic advantage over renewables that are just 

starting to enter the market. In 2030, however, most of these old fully depreciated conventional 

power plants would be retired and hence economic renewables would constitute a greater share of 

the energy mix.
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Supplementary Figure 1 Global US electricity generation and imports performance relative to downscaled planetary 
boundaries broken down by environmental flows. The ‘Business as usual’ energy mix, solution S1, (bars on the top) 
represents the 2012 energy mix in 2030. The ‘Paris Agreement’ mix, solution S2, (bars on the center) represents the least 
cost energy mix in 2030 that would meet the Paris Agreement. The ‘Planetary boundaries’ mix, solution S3, (bars on the 
bottom) represents the least cost energy mix in 2030 that would minimize the transgression of planetary boundaries. 
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Supplementary Figure 2 Box plot with whisker summarizing the uncertainty analysis of the ‘Planetary boundaries’ mix, 
solution S3, which represents the least cost energy mix in 2030 that would minimize the transgression of planetary 
boundaries, due to the uncertainty in the future levelized cost of electricity values (Supplementary Table 2). Whiskers 
represent the range from 5% to 95%. The dashed white line represents the mean and the solid white line represents the 
median. The ‘x’ sign represents the last 1% of the results and the ‘-’ sign represents the maximum and minimum values in 
the sample. The x-axis shows the implications of the uncertainty in the future levelized cost of electricity values on the cost 
of US electricity generation and imports (primary y-axis), as well as on the performance relative to downscaled planetary 
boundaries (secondary y-axis).

Supplementary Figure 3 Box plot with whisker summarizing the likelihood of the Paris Agreement solution (S2) being more 
expensive than the business as usual solution (S1) due to the uncertainty in the levelized cost of electricity induced by the 
consideration of learning curves (Supplementary Table 3). Whiskers represent the range from 5% to 95%. The dashed white 
line represents the mean and the solid white line represents the median. The ‘x’ sign represents the last 1% of the results 
and the ‘-’ sign represents the maximum and minimum values in the sample.
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Supplementary Table 1 Data sources for the parameters used in ERCOM-PB, more details are available in the work by 
Galán-Martín et al.1

Parameter Source Description
𝐵𝑈𝐶 Brown et al.7 For every unit of capacity from a non-dispatchable technology, 50% has to be 

built by dispatchable technologies to maintain the grid reliability
𝐶𝐴𝑃𝐶𝑈𝑅

𝑖,𝑗 EIA21 Current United States installed capacity in 2012 
𝐶𝐴𝑃𝐹𝑖,𝑗 EIA21 Capacity factor
𝐶𝐹𝑙,𝑝 Ryberg et al.14 Characterization factor that links life cycle inventory entry to planetary 

boundary
𝐶𝑂𝐶𝐴𝑁 CEA22 Canadian import price of electricity, 39 USD2013/MWh
𝐶𝑂𝐶𝐴𝑃

𝑖,𝑗 Capital cost

𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 Fixed portion of the operating cost

𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗

BECCS: Cuellar and 
Herzog23 and EIA12

Others: EIA12
Variable portion of the operating cost

𝐶𝑇𝐵 NERC24 Maximum amount of electricity imports from Canadian regions, 5%
𝐷𝐸𝑀𝑗 EIA21 Electricity demand
𝐷𝐼𝑆𝑇

𝑗,𝑗' Total transmission distance between states

𝐷𝐼𝑆𝑇𝐶𝐴𝑁𝑗,𝑘

Galán-Martín et al.1

Total transmission distance between states and Canadian regions
𝐷𝑆𝐹 Short et al.25 Demand satisfaction factor, 1.05
𝐺𝐸𝑁𝑃𝑂𝑇

𝑖,𝑗 NERL26 Potential of electricity generation

𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖 Total United States potential of electricity generation

𝐺𝑉𝐴𝑈𝑆 United Nations27 Gross value added for the United States total economy in 2016
𝐺𝑉𝐴𝑈𝑆𝑝𝑜𝑤𝑒𝑟 United Nations27 Gross value added for the United States power sector in 2016
𝐺𝑊𝑃100𝑖𝑗 100-year global warming potential per unit of electricity generated

 𝐿𝐶𝐼𝑖,𝑗,𝑙
𝐿𝐶𝐼𝑖,𝑘,𝑙

Life cycle data:
Coal with CCS: 
Iribarren et al.28

Solar thermal: 
Corona et al.29

Natural gas with CCS: 
Petrakopoulou et 
al.30

BECCS: Oreggioni et 
al.31

Remaining 
technologies: 
ecoinvent10, 15

Life cycle inventory entry per unit of electricity generated

𝑃𝑜𝑝𝑈𝑆 World Bank Group32 United States population in 2016
𝑃𝑜𝑝𝑊𝑜𝑟𝑙𝑑 World Bank Group32 World population in 2016
𝑆𝑂𝑆𝑝 Steffen et al.17 and 

Ryberg et al.33

Full safe operating space for every planetary boundary

𝑇𝐴𝑅𝐺 Paris Agreement2 Paris Agreement target in 2030
𝑇𝐿𝐹 Fripp34 Losses due to electricity generation, 0.62% for every 100 km
𝜔𝑗 U.S. Army Corps of 

Engineers35

Cost adjustment factor for every state
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Supplementary Table 2 Future average levelized cost of electricity for each technology and uncertainty ranges. 
a We use the share of the additional cost caused by adding a CCS unit to a biomass power plant for every cost component reported by 
Cuellar and Herzog23 and multiply the shares by the biomass power plant cost components reported by EIA12. We assume 19% reduction 
from the resultant current levelized cost of electricity of BECCS to the one in 2030 in line with EIA projections12, 20 for biomass plants.
b We assume 30% of the cost corresponding to the capital cost of the CCS unit to follow the range reported by Koelbl et al.18 (±25% of 
the mean) and the remaining 70% of the cost to follow the range reported by EIA12 for biomass power plants.
Technology Lower bound on the 

future total levelized 
cost of electricity 
(USD2013/MWh)

Average future total 
levelized cost of 
electricity 
(USD2013/MWh)

Upper bound on the 
future total levelized 
cost of electricity 
(USD2013/MWh)

Source

Coal 87.1 95.2 119 EIA12

Natural gas 70.4 75.1 85.5 EIA12

Nuclear 91.8 95.2 101 EIA12

Hydropower 69.3 83.6 107.2 EIA12

Biomass 90 100.4 117.4 EIA12

Geothermal 43.8 47.8 52.1 EIA12

PV rural 97.8 125.3 193.3 EIA12

Wind onshore 65.6 73.6 81.6 EIA12

Wind offshore 169.5 196.9 269.8 EIA12

Coal CCS 132.9 144.4 160.4 EIA12

PV rooftop 97.8 125.3 193.3 EIA12

Solar thermal 174.4 239.7 382.5 EIA12

Natural gas CCS 93.3 100.2 110.8 EIA12

BECCS* 191.7b 224.3a 267.3b Average value: 
Cuellar and Herzog23 
and EIA12

Bounds: Koelbl et al.18 
and EIA12

Supplementary Table 3 Levelized cost of electricity without (current) and with (future) the consideration of potential 
technological improvements (i.e., learning curves). Only levelized cost of electricity values for technologies deployed in 
mixes S1 and S2 are reported.
Technology Current levelized cost of electricity20, 

no learning curves (USD2013/MWh)
Future levelized cost of electricity12, 
with learning curves (USD2013/MWh)

Coal 108.6 95.2
Natural gas 89.9 75.1
Nuclear 128.8 95.2
Hydropower 129.7 83.6
Biomass 120.1 100.4
Geothermal 125.2 47.8
PV rural 428.6 125.3
Wind onshore 161.5 73.6
PV rooftop 428.6 125.3
Solar thermal 277.6 239.7
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