1	Electronic Supplementary Information								
2	The Occurrence and Source Analysis of Selected								
3	Antidepressants and Their Metabolites in Aqueous System								
4			of Shang	hai, China	a				
5	Luo-dan Ma	a, Jian Lia,	Jia-jun Li ^a ,	Min Liu ^a ,	Dong-zh	i Yanª,	Wen-yan		
6 7	Shi ^a , Gang 2	Xu ^a *	Padiation Sah	ol of Environ	montal and (Thomical	Enginoaring		
/ 8	Shanghai Univ	ersity Shanghai ?	00444 P R Ch	ina			Engineering,		
9	* Correspondin	ig authors		ina					
10	Tel.: +86 21 66	5137521; Fax: +86	5 21 66137787; 1	E-mail address:	xugang@shi	ı.edu.cn (C	G. Xu).		
11	School of Env	rironmental and (Chemical Engin	eering, Shangh	nai Universit	ty, 99 Sha	angda Road,		
12	Shanghai 2004	44, P. R. China							
13	Email address:								
14	Luo-dan Ma: 1	<u>069403102@qq.c</u>	om						
15	Jian Li: <u>148612</u>	21872@qq.com							
16	Jia-jun Li: <u>117</u>	5794485@qq.com	<u>1</u>						
17	Min Liu: <u>15475</u>	558147@qq.com							
18	Dong-zhi Yan:	<u>12268/549@qq.</u>	<u>com</u>						
19	wen-yan Shi. <u>v</u>	wysni1981@snu.e	<u>edu.cn</u>						
20									
21									
22									
22									
23									
24									
2-1									
25		Table S1. Ma	in operating par	ameters of the s	studied WW	TPs			
	WWTP	Population service	ved Average	tlow (m ³ /d)	SRT ^a (d)	Seconda	ry treatment		
	WWTP1	88000	7	5000	10-12	A	$\frac{2}{0}$		
	WW1P2	100000	6	0000	10 11.67	A	2/0		
		220000	4 วเ	0000	11.0/	A	-/O		
26	a.Sludge Retent	tion Time	20	00000	14./	F	1/0		
19 20 21 22 23 24 25 26	Wen-yan Shi: y WWTP WWTP1 WWTP2 WWTP3 WWTP4 ^a :Sludge Retent	Table S1. Ma Population ser 88000 100000 220000 3560000 tion Time	in operating part ved Average 7 6 4 28	ameters of the s flow (m ³ /d) 5000 0000 0000 300000	studied WW ⁷ SRT ^a (d) 10-12 10 11.67 14.7	TPs Seconda A A A A	ry treatment ² /O ^b ² /O ² /O ² /O		

27 ^b: Anaerobic-Anoxic-Oxic

28

29

Table S2. Transition ions monitored, chromatographic retention time (t_R) and optimal tandem mass spectrometry (MS/MS) operational parameters for selected antidepressants and their

		() • P • • •			
35	metabolites analyzed b	ov liquid chromat	ography-electrospra	v ionization tanden	n mass spectromet

35	metabolites analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry
36	(LC-ESI-MS/MS) in positive ion mode.

Analytes	Retention time (min)	Transition	Collision energy (eV)	Frogmentor (V)
ODV	3.06	264.2>58.2	18	109
VEN	5.79	278.2>58.2	18	111
CIT	7.72	325.2>109.1	27	144
PAR	8.38	330.2>192.2	19	138
NMI	9.23	264.1>233.1	11	111
NFLU	9.49	296.2>134.1	1	93
FLU	10.07	310.2>44.1	10	99
BUP	10.50	240.1>184.1	8	96
AMI	11.27	278.2>233.1	14	123
SER	12.43	306.1>159.0	27	90
AMI-d3	11.01	281.2>117.1	24	127

Table S3. The matrix effects of selected antidepressants and some of their metabolites in surface water influent and effluent

41		surface water, influ	surface water, influent and effluent.		
_	ME (%)	Surface water	Influent	Effluent	
_	ODV	116	121	108	
	VEN	88	84	91	
	PAR	79	70	115	
	CIT	124	66	120	
	NFLU	83	72	90	
	NTRI	94	89	100	
	FLU	86	85	95	
	AMI	92	88	103	
	SER	85	73	91	
	BUP	79	68	83	

Table S4. The liner correlation equation, correlation coefficient, concentration range and LOQ of the method

	Analytes	Equation	Correlation coefficient	LOO(ng/L)
	VEN	1 = 25570 0/x+27 07	0.00007	0.10
	ODV	y=25375.94x+27.97	0.99997	0.10
		y=2.5375.23x=100.08	0.00003	0.10
		y=17202.14x+1738.01 y=2500.82x+652.26	0.99993	0.50
		y=2309.82x+032.20	0.99933	0.30
		$y=22827.90x\pm 2043.30$	0.999993	0.20
	NFLU	y=3824.69x+983.34	0.99962	0.50
	SER	y=61/4.26x+3/3.18	0.99995	0.20
	BUP	<i>y</i> =994.09 <i>x</i> -18.06	0.99996	0.10
	AMI	<i>y</i> =5797.29 <i>x</i> -243.05	0.99995	0.10
	NMI	<i>y</i> =7141.26 <i>x</i> +667.67	0.99992	0.20
56	The liner range was f	from 0.1ppb to 100ppb.		
57				
58				
59				
60				
61				
62				
63				
64				
04				
65				
66				
67				
68				
69				
70				

84

86 Table S5. The concentrations of selected antidepressants from different regions in receiving 37 _ waters and WWTPs

•)	1
- 24	2	
L.	,	
~		

aamnaund	Concentration	samplas	ragion	roforonao
compound	(ng/L)	samples	region	reference
ODV	2600*	influent	Canada	
	1637*	effluent		1
	26-979	receiving water		
	310.10*	influent		
	276.25*	effluent		2
	21.00-68.70	receiving water		
	2703*	influent		3
	2487*	effluent		-
	1138.43*	influent	Germany	4
	1101.87*	effluent		
	575*	influent		
	605*	effluent		5
	<loq-270< td=""><td>receiving water</td><td></td><td></td></loq-270<>	receiving water		
	653.18*	effluent		6
	<loq-743< td=""><td>receiving water</td><td></td><td></td></loq-743<>	receiving water		
	179.73*	effluent	Beijing	7
	971.50*	influent	The USA	
	1014.50*	effluent		8
	9-33	receiving water		
	ND-590000	receiving water	Israel	9
	87.22	influent	Shanghai	
	125.64	effluent		present
	0.15-4.53	receiving water		
VEN	1155*	receiving water	Canada	
	808*	effluent		1
	4-507	receiving water		
	204.35*	influent		
	195.25*	effluent		2
	12.90-45.90	receiving water		
	1343*	influent		3
	1087*	effluent		
	565.77*	influent	Germany	4
	539.00*	effluent		
	230*	influent		
	210*	effluent		5
	<loq-100< td=""><td>receiving water</td><td></td><td></td></loq-100<>	receiving water		
	157.36*	effluent		6
	<loq-122< td=""><td>receiving water</td><td></td><td></td></loq-122<>	receiving water		

7 11 12 13 8 14 15 16 17 9 present 18
11 12 13 8 14 15 16 17 9 present 18
12 13 8 14 15 16 17 9 present
13 8 14 15 16 17 9 present 18
8 14 15 16 17 9 present
8 14 15 16 17 9 present
8 14 15 16 17 9 present
14 15 16 17 9 present
14 15 16 17 9 present
15 16 17 9 present
16 17 9 present
17 9 present
9 present
9 present
present
present
18
18
19
20
1
2
2
3
4
4
5
10
7
21
21
11
12
12
15
o
0

CIT

<lod-190< th=""><th>receiving water</th><th></th><th></th></lod-190<>	receiving water		
156.00*	influent	Norway	22
74.79*	effluent		
256.67*	influent		23
151.07*	effluent		
<1-160	receiving water	Spain	14
<loq-120< td=""><td>receiving water</td><td></td><td>15</td></loq-120<>	receiving water		15
0.64-18	receiving water	The Czech Republic	16
83*	influent		17
73*	effluent		
4.72*	influent	Shanghai	
13.81*	effluent		present
<loq< td=""><td>receiving water</td><td></td><td></td></loq<>	receiving water		
ND-5.1	receiving water		18
118.88*	influent	Slovakia	20
16*	influent	Canada	
<loq< td=""><td>effluent</td><td></td><td>1</td></loq<>	effluent		1
ND	receiving water		
4.95*	influent		
4.75*	effluent		2
1.30-3.00	receiving water		
8.00*	influent		3
5.60*	effluent		5
<loq< td=""><td>influent</td><td>Germany</td><td>4</td></loq<>	influent	Germany	4
<loq< td=""><td>effluent</td><td></td><td></td></loq<>	effluent		
7.20*	influent		
2.55*	effluent		5
<loq< td=""><td>receiving water</td><td></td><td></td></loq<>	receiving water		
2.10-3	receiving water	The USA	12
322*	influent		
315*	effluent		8
<lod-270< td=""><td>receiving water</td><td></td><td></td></lod-270<>	receiving water		
9.10*	influent	Norway	22
4.81*	effluent		
5.23*	influent		23
0.93*	effluent		
<2	receiving water	Spain	14
ND-7.76	receiving water		24
<loq-225< td=""><td>receiving water</td><td></td><td>25</td></loq-225<>	receiving water		25
<loq< td=""><td>influent</td><td>Shanghai</td><td></td></loq<>	influent	Shanghai	
<loq< td=""><td>effluent</td><td></td><td>present</td></loq<>	effluent		present
ND	receiving water		
ND-2.10	receiving water		18
3.80*	influent	Canada	2

PAR

NMI

		effluent	2.65*
		receiving water	0.41-0.73
3		influent	18*
5		effluent	11*
7	Beijing	effluent	42.23*
	Shanghai	influent	<loq< td=""></loq<>
present		effluent	<loq< td=""></loq<>
		receiving water	<loq< td=""></loq<>
	Canada	influent	11*
1		effluent	5*
		receiving water	ND
		influent	3*
2		effluent	1.75*
		receiving water	1.20-1.30
3		influent	9.10*
		effluent	7.40*
4	Germany	influent	<loq< td=""></loq<>
		effluent	<loq< td=""></loq<>
		influent	9.05*
5		effluent	0.95*
		receiving water	<loq-9.10< td=""></loq-9.10<>
12	The USA	receiving water	0.83-1
		influent	265*
8		effluent	288*
		receiving water	<lod-260< td=""></lod-260<>
22	Norway	influent	4.17*
		effluent	1.39*
	Shanghai	influent	<loq< td=""></loq<>
present		effluent	<loq< td=""></loq<>
		receiving water	ND
	Canada	influent	191*
1		effluent	122*
		receiving water	ND-54
		influent	3.30*
2		effluent	2.85*
		receiving water	0.42-1.30
3		influent	18*
		effluent	11*
4	Germany	influent	<loq< td=""></loq<>
-		effluent	<loq< td=""></loq<>
		influent	19.50*
5		effluent	12*
		receiving water	<loq-3.80< td=""></loq-3.80<>
10	Poland	receiving water	ND-5.50

NFLU

FLU

3.40*	influent	Beijing	21
2*	effluent		
12-20	receiving water	The USA	12
8.40*	influent	Norway	22
3.55*	effluent		
1.37*	influent		23
0.83*	effluent		
<1	receiving water	Spain	14
<loq-44< td=""><td>receiving water</td><td></td><td>15</td></loq-44<>	receiving water		15
ND-14.50	receiving water		24
<loq-23.80< td=""><td>receiving water</td><td></td><td>25</td></loq-23.80<>	receiving water		25
0.60-66.10	receiving water		26
1.03*	influent	Shanghai	
2.73*	effluent		present
<loq< td=""><td>receiving water</td><td></td><td></td></loq<>	receiving water		
2.30-42.90	receiving water		18
2.60*	influent		
1.40*	effluent		27
0.10-1.30	receiving water		
ND-40.20	receiving water	Hunan Province	19
191*	influent	Canada	
104*	effluent		1
ND-96	receiving water		
50-60	receiving water	The USA	12
128.50*	influent		13
50.75*	effluent		10
1458.50*	influent		
1562*	effluent		8
<lod-220< td=""><td>receiving water</td><td></td><td></td></lod-220<>	receiving water		
1.50	influent	Shanghai	
1.56	effluent		present
0.17-1.20	receiving water		
19.20*	influent	Canada	
18.30*	effluent		2
0.87-3.70	receiving water		
138*	influent		3
71*	effluent		5
<loq< td=""><td>influent</td><td>Germany</td><td>4</td></loq<>	influent	Germany	4
17.23*	effluent		4
<1	receiving water	Spain	14
2.39*	influent	Shanghai	
3.87*	effluent		present
0.12-0.64	receiving water		
ND-4.80	receiving water		18
	-		

BUP

AMI

3.00*	influent		
1.20*	effluent		27
<loq< td=""><td>receiving water</td><td></td><td></td></loq<>	receiving water		
34*	influent	Canada	
16*	effluent		1
ND-6	receiving water		
6.05*	influent		
5.45*	effluent		2
0.84-2.40	receiving water		
20*	influent		3
12*	effluent		5
<loq< td=""><td>influent</td><td>Germany</td><td>4</td></loq<>	influent	Germany	4
<loq< td=""><td>effluent</td><td></td><td>·</td></loq<>	effluent		·
28*	influent		
8*	effluent		5
<loq< td=""><td>receiving water</td><td></td><td></td></loq<>	receiving water		
<loq< td=""><td>receiving water</td><td>Poland</td><td>10</td></loq<>	receiving water	Poland	10
32.23*	effluent		7
27*	influent	Beijing	21
13.60*	effluent		
33-49	receiving water		12
61.95*	influent		13
43.65*	effluent	The USA	
792.50*	influent	The USA	
805*	effluent		8
<lod-220< td=""><td>receiving water</td><td></td><td></td></lod-220<>	receiving water		
12.53*	influent		22
8.74*	effluent	Norway	
2.10*	influent	INDEWAY	23
1.50*	effluent		
12*	influent	The Czech Penublie	17
3*	effluent	The Czech Republic	.,
5.00*	influent		
7.37*	effluent	Shanchai	present
<loq< td=""><td>receiving water</td><td>Shanghai</td><td></td></loq<>	receiving water	Shanghai	
ND-5.00	receiving water		18

88	*: Mean conc	entrations of se	lected antidepress	ants in influents and effluents in WWTPs		
89						
90						
91						
92						
93	Table S6. Concentrations of determined antidepressants in the mainstream and 3 of its tributaries					
94			of Huang	pu River.		
-	Category	Compound	Frequency (Concentration(ng/L)		

SER

		%)	Min	Med	Max
SNaRIs	VEN	96	<loq< td=""><td>0.53</td><td>3.03</td></loq<>	0.53	3.03
	ODV	100	0.15	0.88	4.53
SSRIs	FLU	4	<loq< td=""><td><loq< td=""><td>0.24</td></loq<></td></loq<>	<loq< td=""><td>0.24</td></loq<>	0.24
	NFLU	0	ND	ND	<loq< td=""></loq<>
	CIT	0	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	PAR	0	ND	ND	<loq< td=""></loq<>
	SER	0	ND	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
TCAs	AMI	100	0.12	0.19	0.64
	NMI	0	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
NaDaRIs	BUP	100	0.17	0.31	1.20

Table S7. PNEC val	ues of six	antidepressants	from	literature	(ng/L))
--------------------	------------	-----------------	------	------------	--------	---

Compound	Mollusc	Pseudokirchneriella subcapitata	Algae	Cladocerans	fish
VEN	313 ^a	47580 ^b		13000 ^c	
CIT	405 ^a	3030 ^b	729000 ^{<i>d</i>}	8000 c	
PAR		630 ^b	15699000 ^d	2200 ^c	
FLU		200 ^{<i>b</i>}	345000 ^{<i>d</i>}		100 ^c
SER		150 ^b	13086000 ^d		
AMI		720 ^{<i>b</i>}	246 ^c		

a: PNEC from the effect concentrations (Fisher's Exact Test, p < 0.0006) for freshwater snails²⁸

98 ^b: PNEC for freshwater for Pseudokirchneriella subcapitata²⁹

99 ^c: PNEC from the concentrations resulting in 50% effect (EC50), which was calculated by uncertain factor¹⁴

100 d: PNEC from the tier of Structure-activity relationships(ECOSARs from the U.S. EPA's)³⁰

115 **References**

- 116 1. C. D. Metcalfe, S. Chu, C. Judt, H. Li, K. D. Oakes, M. R. Servos and D. M. Andrews, Antidepressants and their metabolites in municipal wastewater, and 117 downstream exposure in an urban watershed, *Environ Toxicol Chem*, 2010, **29**, 79-89.
- C. G. A. Lajeunesse, and S. Sauve, Determination of Basic Antidepressants and Their N-Desmethyl Metabolites in Raw Sewage and Wastewater Using Solid-Phase
 Extraction and Liquid Chromatography-Tandem Mass Spectrometry, *Anal. Chem.*, 2008, **80**, 5325–5333.
- 120 3. A. Lajeunesse, S. A. Smyth, K. Barclay, S. Sauvé and C. Gagnon, Distribution of antidepressant residues in wastewater and biosolids following different treatment 121 processes by municipal wastewater treatment plants in Canada, *Water Research*, 2012, **46**, 5600-5612.
- R. Gurke, J. Rossmann, S. Schubert, T. Sandmann, M. Rößler, R. Oertel and J. Fauler, Development of a SPE-HPLC–MS/MS method for the determination of most
 prescribed pharmaceuticals and related metabolites in urban sewage samples, *Journal of Chromatography B*, 2015, **990**, 23-30.
- 124 5. M. P. Schlusener, P. Hardenbicker, E. Nilson, M. Schulz, C. Viergutz and T. A. Ternes, Occurrence of venlafaxine, other antidepressants and selected metabolites in 125 the Rhine catchment in the face of climate change, *Environ Pollut*, 2015, **196**, 247-256.
- 126 6. P. C. Rua-Gomez and W. Puttmann, Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of 127 surface waters and groundwater, *J Environ Monit*, 2012, **14**, 1391-1399.
- 128 7. L. H. Sheng, H. R. Chen, Y. B. Huo, J. Wang, Y. Zhang, M. Yang and H. X. Zhang, Simultaneous determination of 24 antidepressant drugs and their metabolites in 129 wastewater by ultra-high performance liquid chromatography-tandem mass spectrometry, *Molecules*, 2014, **19**, 1212-1222.
- P. Arnnok, R. R. Singh, R. Burakham, A. Perez-Fuentetaja and D. S. Aga, Selective Uptake and Bioaccumulation of Antidepressants in Fish from Effluent-Impacted
 Niagara River, *Environ Sci Technol*, 2017, **51**, 10652-10662.
- G. G. A. Voloshenko-Rossin, K. Cohen, J. Gun, L. Cumbal-Flores, W. Parra-Morales, F. Sarabia, F. Ojeda and O. Lev Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers, *Environmental Science Processes & Impacts*, 2015, **17**, 41-53.
- 135 10. J. Giebułtowicz and G. Nałęcz-Jawecki, Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw 136 (Poland), *Ecotoxicology and Environmental Safety*, 2014, **104**, 103-109.
- 137 11. M. Himmelsbach, W. Buchberger and C. W. Klampfl, Determination of antidepressants in surface and waste water samples by capillary electrophoresis with
- 138 electrospray ionization mass spectrometric detection after preconcentration using off-line solid-phase extraction, *Electrophoresis*, 2006, **27**, 1220-1226.
- 139 12. M. M. S. a. E. T. Furlong, Trace Analysis of Antidepressant Pharmaceuticals and Their Select Degradates in Aquatic Matrixes by LC/ESI/MS/MS, Anal. Chem., 2008,

140 **80**, 1756-1762.

- 141 13. B. Subedi and K. Kannan, Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, 142 USA, *Science of The Total Environment*, 2015, **514**, 273-280.
- 143 14. Y. Valcárcel, S. González Alonso, J. L. Rodríguez-Gil, A. Gil and M. Catalá, Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid 144 Region (Spain) and potential ecotoxicological risk, *Chemosphere*, 2011, **84**, 1336-1348.
- 145 15. S. González Alonso, M. Catalá, R. R. Maroto, J. L. R. Gil, Á. G. de Miguel and Y. Valcárcel, Pollution by psychoactive pharmaceuticals in the Rivers of Madrid 146 metropolitan area (Spain), *Environment International*, 2010, **36**, 195-201.
- 147 16. G. Fedorova, T. Randak, O. Golovko, V. Kodes, K. Grabicova and R. Grabic, A passive sampling method for detecting analgesics, psycholeptics, antidepressants and 148 illicit drugs in aquatic environments in the Czech Republic, *Science of The Total Environment*, 2014, **487**, 681-687.
- 149 17. O. Golovko, V. Kumar, G. Fedorova, T. Randak and R. Grabic, Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators 150 in a wastewater treatment plant, *Chemosphere*, 2014, **111**, 418-426.
- 151 18. J. X. Minghong Wu, Fenfen Chen, Cao Fu, Gang Xu, Occurrence and risk assessment of antidepressants in Huangpu River of Shanghai, China, *Environmental Science* 152 & *Pollution Research International*, 2017, **24**, 20291–20299.
- 153 19. R. Ma, B. Wang, S. Lu, Y. Zhang, L. Yin, J. Huang, S. Deng, Y. Wang and G. Yu, Characterization of pharmaceutically active compounds in Dongting Lake, China: 154 Occurrence, chiral profiling and environmental risk, *Science of The Total Environment*, 2016, **557-558**, 268-275.
- 155 20. T. Mackulak, L. Birosova, M. Gal, I. Bodik, R. Grabic, J. Ryba and J. Skubak, Wastewater analysis: the mean of the monitoring of frequently prescribed 156 pharmaceuticals in Slovakia, *Environ Monit Assess*, 2016, **188**, 18.
- 157 21. S. Yuan, X. Jiang, X. Xia, H. Zhang and S. Zheng, Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater 158 treatment plants in Beijing, China, *Chemosphere*, 2013, **90**, 2520-2525.
- 159 22. T. Vasskog, T. Anderssen, S. Pedersen-Bjergaard, R. Kallenborn and E. Jensen, Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters
- 160 at Spitsbergen and in Norway, *Journal of Chromatography A*, 2008, **1185**, 194-205.
- 161 23. T. Vasskog, U. Berger, P.-J. Samuelsen, R. Kallenborn and E. Jensen, Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromsø, Norway, 162 *Journal of Chromatography A*, 2006, **1115**, 187-195.
- 163 24. R. López-Serna, M. Petrović and D. Barceló, Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products
- 164 in the Ebro River basin (NE Spain), *Science of The Total Environment*, 2012, **440**, 280-289.
- 165 25. R. López-Serna, M. Petrović and D. Barceló, Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters

166 based on ultra high performance liquid chromatography (UHPLC)–tandem mass spectrometry (MS/MS), *Chemosphere*, 2011, **85**, 1390-1399.

- 167 26. C. Fernández, M. González-Doncel, J. Pro, G. Carbonell and J. V. Tarazona, Occurrence of pharmaceutically active compounds in surface waters of the henares-168 jarama-tajo river system (madrid, spain) and a potential risk characterization, *Science of The Total Environment*, 2010, **408**, 543-551.
- 169 27. M. Wu, J. Xiang, C. Que, F. Chen and G. Xu, Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China, *Chemosphere*, 2015, 170 **138**, 486-493.
- P. P. Fong and C. M. Hoy, Antidepressants (venlafaxine and citalopram) cause foot detachment from the substrate in freshwater snails at environmentally relevant
 concentrations, *Marine and Freshwater Behaviour and Physiology*, 2012, **45**, 145-153.
- 173 29. L. Minguez, J. Pedelucq, E. Farcy, C. Ballandonne, H. Budzinski and M. P. Halm-Lemeille, Toxicities of 48 pharmaceuticals and their freshwater and marine
- 174 environmental assessment in northwestern France, *Environ Sci Pollut Res Int*, 2016, **23**, 4992-5001.
- 175 30. D. J. Johnson, H. Sanderson, R. A. Brain, C. J. Wilson and K. R. Solomon, Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine,
- 176 fluvoxamine, and sertraline to algae, *Ecotoxicology and Environmental Safety*, 2007, **67**, 128-139.