ELECTRONIC SUPPLEMENTRAY INFORMATION FOR:

TITLE: Exploring Matrix Effects and Quantifying Organic Additives in Hydraulic Fracturing Associated Fluids

Using Liquid Chromatography Electrospray Ionization Mass Spectrometry

AUTHORS: Marika Nell and Damian E. Helbling

AFFILIATION: School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

CORRESPONDING AUTHOR: Damian E. Helbling, School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY, 14853, USA. Email: damian.helbling@cornell.edu. Tel: +1 607 255 5146. Fax: +1 607 255 9004.

Table of Contents

Methods – Standards and Reagents	. 3
Methods – Sample Collection	. 8
Methods – Matrix Recovery Experiment	. 9
Methods – Analytical HPLC-ESI-MS Method	10
Results – Analytical Response to HFF Additives	12
Results – Matrix Recovery Experiment	14
Results – Qualitative evaluation of chemical additives in water samples	17

Methods – Standards and Reagents

Compound Name Compound Use	CAS Number	Chemical Structure	Reason for Inclusion
2-butoxyethanol surfactant, corrosion inhibitor, and nonemulsifier	111-76-2	ОН	Elevated exposure potential ¹
2-ethyl-1-hexanol surfactant and nonemulsifier	104-76-6	HO	Elevated exposure potential ¹
2-acrylamido-2-methylpropanesulfonic acid possible degradation product	15214-89-8	N N N N N N N N N N N N N N N N N N N	Monomer of polymer used in MIP 3H
Alkyl dimethyl benzyl ammonium chloride (ADBAC) biocide and surfactant	63449-41-2		Biocidal properties and frequency of use ² ; Amenability to LC-MS ³
Bis(2-ethylhexyl) phthalate diverting agent	117-81-7		Associated with reproductive or developmental toxicity ⁴

Table ESI1. Target compounds and justification for inclusion in the study.

Bis(hexamethylene) triamine possible degradation product of scale inhibitor	143-23-7		Possible product of BMPA, a contaminant with elevated exposure potential ¹
Brilliant Blue FCF dye tracer and gelling agent	3844-45-9		Elevated exposure potential ¹
Butyl glycidyl ether <i>resin</i>	2426-08-6	$\overset{\circ}{\frown}\overset{\circ}{\bullet}\overset{\circ}{\frown}\overset{\circ}{\bullet}$	Elevated exposure potential ¹
Cocamidopropyl dimethylamine (CAPDMA) surfactant	68140-01-2	H _(2n+1) Cn H N	Amenability to LC-MS ³
Cocamidopropyl hydroxysultaine (CAPHS) surfactant	68139-30-0		Amenability to LC-MS ³
Dazomet (Thiadiazine) <i>biocide</i>	533-74-4	N N S	Associated with reproductive or developmental toxicity ⁵

Didecyldimethylammonium chloride biocide	7173-51-5		Frequency of use and toxicity ⁶
Diethanolamine surfactant, crosslinker, and breaker	111-42-2	но	Mobility and toxicity ⁶
Ethylenediaminetetraacetic acid (EDTA) complexing agent	60-00-4		Persistence in environment ⁷
Glutaraldehyde <i>biocide</i>	111-30-8	0	Most frequently used biocide, ² disclosed in MIP 3H, Amenability to LC-MS ³
Nonylphenol Ethoxylates solvent and surfactant	9002-93-1 and 127087-87-0	C ₉ H ₁₉	Frequency of use ⁷ ; precursor to nonylphenol
Polyethylene Glycol solvent and surfactant	25322-68-3	н (О), ОН	Amenability to LC-MS ⁸
Polypropylene Glycol solvent and surfactant	25322-69-4	н Содон	Amenability to LC-MS ⁹

			Other Ingredients
Compound Name	Supplier	Percent Purity	in Standard
2-butoxyethanol	Fluka	99.5%	Not listed
2-ethyl-1-hexanol	Fluka	99.5%	Not listed
2-acrylamido-2- methylpropanesulfonic acid	Aldrich	50%	Water
Benzyldimethyldodecyl ammonium chloride (ADBAC-C12)*	Sigma-Aldrich	99%	Not listed
Bis(2-ethylhexyl) phthalate	Fluka	99.7%	Not listed
Bis(hexamethylene) triamine	Aldrich	94%	Not listed
Brilliant Blue FCF	Fluka	97%	Not listed
Butyl glycidyl ether	Aldrich	95%	Not listed
Dazomet (Thiadiazine)	Fluka	99.9%	Not listed
Didecyldimethylammonium chloride	Fluka	88.5%	Not listed
Diethanolamine	Fluka	99.7%	Not listed
Ethylenediaminetetraacetic acid tetra-sodium salt hydrate	Sigma	99%	Not listed
Glutaraldehyde	Sigma	50%	Water

Table ESI2. Information on supplier and purity of individual target compounds.

*The pure ADBAC-C12 standard was acquired for use in the ADBAC-C12 calibration curve and was not included in the standard mixture that was used in compound tuning and the matrix recovery experiment.

Homologous Series Name (Industrial		Percent	# Homologues in Standard (>5%	
Blend)	Supplier	Purity	Relative Intensity)	Other Ingredients in Mix
Benzalkonium chloride	Fluka	95%	3	Not listed
Cocoamidopropyl dimethylamine (Schercodine C)	Lubrizol	90-100%	5	Glycerin (1-4.9%), Coconut oil (1-4.9%)
Cocoamidopropyl hydroxysultaine (Chembetaine CAS)	Lubrizol	30-39.9%	6	Water (40-49.9%), Glycerin (1-4.9%), NaCl (5-9.9%)
Polyethylene Glycol (Kollisolv PEG E 400)	Sigma	~98%	11	 ≤0.1% sulfated ash ≤0.25% ethylene glycol and diethylene glycol (sum) ≤0.5 g acetic acid (per 100 g) ≤1 ppm ethylene oxide ≤1 ppm lead (verified on random samples only) ≤1.0% water ≤10 ppm dioxan ≤15 ppm formaldehyde ≤5 ppm heavy metals (verified on random samples only) ≤620 ppm ethylene glycol
Polypropylene Glycol (P 400)	Aldrich	Not listed	10	Not listed
Nonylphenol Ethoxylates (Nonidet P 40)	Sigma	10%	13	Water
Nonylphenol Ethoxylates (Tergitol NP-40)	Sigma	70%	>15	Water

Table ESI3. Information on supplier and purity of target compounds obtained in mixtures.

Methods – Sample Collection

Sample Description	Sample Date	Date Received	pH (prior to adjustment)	TDS ¹
Hydraulic Fracturing Fluid (HFF) 3H	11/9/15	11/23/15	6.86	398 ppm
Hydraulic Fracturing Fluid (HFF) 5H	11/6/15	11/23/15	6.98	351 ppm
Makeup Water (MW) 3H	11/9/15	11/23/15	7.32	303 ppm
Makeup Water (MW) 5H	11/6/15	11/23/15	7.38	297 ppm
Flowback Water (FW) 3H	12/10/15	12/22/15	7.85	16.1 ppth
Flowback Water (FW) 5H	12/10/15	12/22/15	5.73	65.4 ppth
Produced Water (PW) 3H Week 1	12/17/15	12/22/15	6.97	29.1 ppth
Produced Water (PW) 5H Week 1	12/17/15	12/22/15	6.6	16.5 ppth
Produced Water (PW) 3H Week 2	12/22/15	2/1/16	6.08	30.4 ppth
Produced Water (PW) 5H Week 2	12/22/15	2/1/16	6.72	30.4 ppth
Produced Water (PW) 3H Week 3	1/6/16	2/1/16	7.3	34.0 ppth
Produced Water (PW) 5H Week 3	1/6/16	2/1/16	6.55	27.5 ppth
Produced Water (PW) 3H Week 4	1/20/16	2/1/16	5.93	32.9 ppth
Produced Water (PW) 5H Week 4	1/20/16	2/1/16	6.11	31.2 ppth

 Table ESI4. Description of samples collected from Morgantown, WV.

¹ppm = parts per million; ppth = parts per thousand.

Methods – Matrix Recovery Experiment

Compound or Homologous Series Names (Standard Used)	Concentration in Samples after Spiking (µg/L)	LOD (in µg/L)
2-acrylamido-2-methylpropanesulfonic acid	125	0.5
2-butoxyethanol	125	0.05
2-ethyl-1-hexanol	250	50
Benzalkonium chloride (ADBAC)	2.5	0.05
Bis(2-ethylhexyl) phthalate	5	0.05
Bis(hexamethylene) triamine	125	50
Brilliant Blue FCF	25	5
Butyl glycidyl ether	250	50
Cocoamidopropyl dimethylamine (CAPDMA, Schercodine C)	1.25	0.05
Cocoamidopropyl hydroxysultaine (CAPHS, Chembetaine CAS)	2.5	0.5
Dazomet (Thiadiazine)	12.5	0.5
Didecyldimethylammonium (Didecycldimethylammonium chloride)	1.25	0.05
Diethanolamine	250	0.5
Ethylenediaminetetraacetic acid (Ethylenediaminetetraacetic acid tetra-sodium salt hydrate)	5	50
Glutaraldehyde	1250	50
Polyethylene Glycol (PEG, Kollisolv PEG E 400)	2.5	0.05
Polypropylene Glycol (PPG, P 400)	2.5	0.05
Nonylphenol Ethoxylates (NPE, Nonidet P 40)	12.5	0.05
Nonylphenol Ethoxylates (NPE, Tergitol NP-40)	25	0.05

Table ESI5. Concentration of standards spiked into each sample.

Methods – Analytical HPLC-ESI-MS Method

We injected 5 mL samples onto the trap column using a low-pressure loading pump (Dionex Ultimate 3000, Thermo Fisher Scientific) delivering 1 mL·min⁻¹ of an isocratic mobile phase and eluted samples from the trap column onto the analytical column using a high-pressure elution pump (Dionex Ultimate 3000, Thermo Fisher Scientific) delivering 0.2 mL·min⁻¹ of the same mobile phase.

	1 0	0 , (
Retention Time	Flow	% LC-MS Grade Water with	% LC-MS Grade Methanol with
(min)	(mL/min)	0.1% Formic Acid (v/v)	0.1% Formic Acid (v/v)
0.0	1.0	98	2
0.0	1.0	98	2
5.1	1.0	98	2
5.2	0.0	98	2
30.2	0.0	98	2
30.2	1.0	2	98
37.3	1.0	2	98
37.4	1.0	98	2
38.6	1.0	98	2

Table ESI6. Gradient program for large-volume injection (loading pump).

Table ESI7. Gradient program for chromatographic separation (elution pump).

Retention Time	Flow	% LC-MS Grade Water with	% LC-MS Grade Methanol with
(min)	(mL/min)	0.1% Formic Acid (v/v)	0.1% Formic Acid (v/v)
0.0	0.2	90	10
0.0	0.2	90	10
5.1	0.2	90	10
9.1	0.2	50	50
22.1	0.2	5	95
30.1	0.2	5	95
30.2	0.2	90	10
38.6	0.2	90	10

Full scan mass spectra (MS) were acquired with an m/z range of 100 to 1000 and data-dependent tandem mass spectra (MS/MS) were acquired at the exact masses of the dominant adducts for all individual compounds and homologues included in our standard mixture.

Paran				
Voltage (positive mode/negative mode)		4 kV/-3 kV		
Sheath Gas		40		
Auxiliary Gas		20		
Capillary Temperature		320°C		
Source Temperature (Aux Gas H	leater Temperature)	50°C		
	Resolution	140,000		
Full Scan MS	Polarity	Positive and Negative mode, run simultaneously using rapid polarity switching		
	AGC Target	5e5		
	Maximum IT	250 ms		
	Scan Range	100 to 1000 m/z		
	Resolution	17,500		
	AGC Target	2e5		
dd-MS2	Maximum IT	100 ms		
	Loop Count	5		
	Isolation Window	1.0 m/z		
	Dynamic Exclusion	3.0 sec		

 Table ESI8.
 Parameters for full scan MS acquisition and data-dependent MS/MS experiments.

Results – Analytical Response to HFF Additives

Table ESI9. MS and MS/MS properties of individual compounds and representative homologues. Adducts or ions in **bold** represent the dominant adduct or ion in nanopure water.

Compound Name	Molecular		Exact	Accurate	Error				LOD (in
	Formula	Adducts or lons	Mass	Mass	(ppm)	NCE	Fragments	RT	μg/L)²
2-acrylamido-2- methylpropanesulfonic acid	$C_7H_{13}NO_4S$	[M-H] ⁻	206.0482	206.0487	-0.715	45	135.0109	7.5	0.5
2-butoxyethanol	C ₆ H ₁₄ O ₂	[M+H] ⁺	119.1067	119.1068	0.840	30	57.0707	10.7	0.05
		[IVI+Na]	141.0886	141.0885	-0.708		105.0034		
2-ethyl-1-hexanol	C ₈ H ₁₈ O	[M-H₂O+H] ⁺	113.1325	113.1325	0.000	NA ¹	NA ¹	16.0	50
		[M+CH₃OH+H] ⁺	163.1693	163.1692	-0.613				
Benzyldimethyldodecyl		Fa a 3 b					212.2372		a a a ²
ammonium (ADBAC-C ₁₂)	$C_{21}H_{28}N^+$	[M]⁺	304.2999	304.3000	0.274	45	91.0544	18.0	0.05°
							58.0659		
		[M+H]⁺	391.2843	391.2842	-0.836		149.0230		
Bis(2-ethylhexyl) phthalate	C ₂₄ H ₃₈ O ₄	[M+Na]⁺	413.2662	413.2661	-1.091	45	72.0861	24.0	0.05
		[2M+Na]⁺	803.5432	803.5936	-1.430		57.0707		
							100.112		
Ric(hovomothylono)							83.0858		
bis(nexametriyiene)	$C_{12}H_{29}N_3$	[M+H]⁺	216.2429	216.2431	-1.501	45	55.0549	6.05	50
triamine							182.1900		
							199.2167		
		[M+H]⁺	793.1295	793.1290			2.47.0720		
		[M+Na]⁺	815.1114	815.1127	1.221		247.9730		
Brilliant Blue FCF	C ₃₇ H ₃₄ N ₂ Na ₂ O ₉ S ₃	[M+2Na] ²⁺	419.0500	419.0507	1.594	45	215.9829	11.1	5
		[M-2Na+3H]⁺	749.1656	749.1667	0.378		527.1382		
		[M-Na+2H] ⁺	771.1475	771.1486			541.1540		
		[M+H] ⁺	131,1067	131,1070	-0.106		138,9540		
Butyl glycidyl ether	C ₇ H ₁₄ O ₂	[M+Na]⁺	153.0886	153.0880	-0.141	45	120.9430	11.6	50
CAPDMA-C ₁₁ H ₂₃	$C_{17}H_{36}O_2N_2$	[M+H]⁺	285.2900	285.2900	0.209	60	240.2320	17.2	0.05 ³
CAPHS-C ₁₁ H ₂₃	$C_{20}H_{43}N_2O_5S^+$	[M]⁺	423.2890	423.2880	0.592	30	240.2320	18.2	0.5 ³

Dazomet (Thiadiazine)	$C_5H_{10}N_2S_2$	[M+H]⁺	163.0353	163.0357	-0.652	30	119.9940 90.0375	8.7	0.5
Didecyldimethylammonium	$C_{22}H_{48}N$	[M]⁺	326.3781	326.3773	-2.381	45	186.2210 57.0706	20.3	0.05
Diethanolamine	$C_4H_{11}NO_2$	[M+H]⁺	106.0863	106.0862	1.554	NA ¹	NA ¹	6.2	0.5
Ethylenediaminetetraacetic acid (EDTA)	$C_{10}H_{16}N_2O_8$	[M+H] ⁺ [M+Na]⁺ [M-H]⁻	293.0979 315.079 291.0834	293.0981 315.0800 291.0846	0.138 0.109 1.451	30	160.0606 132.0657 114.0551 56.0503	6.3	50
Glutaraldehyde	$C_5H_8O_2$	[M+H] ⁺ [M+Na] ⁺ [M+CH₃OH+Na] ⁺	101.0597 123.0416 155.0679	101.0598 123.0416 155.0678	0.104 -0.081 -0.115	45	NA ¹	8.1	50
PEG-EO9	$C_{18}H_{38}O_{10}$	[M+H] ⁺ [M+Na] ⁺	415.2532 437.2352	415.2541 437.2361	0.762 0.896	30	89.0599 133.0858	9.6	0.05 ³
PPG-PO8	$C_{24}H_{50}O_9$	[M+H] ⁺ [M+Na]⁺	483.3528 505.3347	483.3532 505.3348	0.870 0.269	30	58.0499 117.091	15.4	0.05 ³
NPE-EO7	C ₂₉ H ₅₂ O ₈	[M+H] ⁺ [M+Na] ⁺	529.3735 551.3554	529.3740 551.3570	0.878 0.944	30	89.0900 133.0859 71.0861 121.0647	21.3	0.05 ³
NPE-E037	$C_{89}H_{172}O_{38}$	[M+3H] ³⁺	617.3915	617.3919	0.670	15	89.0599 133.0858 177.1120	21.2	0.05 ³

¹Parent compound is too small for detection of fragments.

²LODs were determined as the lowest point in the external calibration curve with at least five MS scans measured across the chromatographic peak and the most intense MS/MS fragment still detected.

³LOD for all homologous series is based on total concentration of all homologues in the mixture.

Results – Matrix Recovery Experiment

Figure ES1. Inorganic content of samples determined by means of inductively coupled plasma-optical emission mass spectrometry.

Table ESI10.MRFs calculated for each target analyte. MW is makeup water; HFF is hydraulic fracturing fluid; FW is flowback water; PW is produced water. Negative values occasionally occurred when the native concentration of a spiked compound was significantly higher than the amount included in the spike. These values could not be utilized in quantification.

								PW	PW	PW	PW	PW	PW	PW	PW
		MW	MW	FW	FW	HFF	HFF	ЗH	ЗH	ЗH	3H	5H	5H	5H	5H
Component Name	Adduct or Ion	ЗH	5H	3H	5H	3H	5H	W1	W2	W3	W4	W1	W2	W3	W4
2-acrylamido-2-methlypropanesulfonic acid	M-H	0.96	0.96	0.13	0.39	0.81	0.86	0.66	0.59	0.63	0.59	0.72	0.64	0.65	0.65
2-butoxyethanol	M+H	0.90	0.76	0.56	1.14	1.17	0.89	0.95	0.86	0.72	0.75	0.88	0.81	0.73	0.73
2-butoxyethanol	M+Na	0.67	0.72	0.85	0.32	0.28	0.51	1.44	1.69	1.35	1.34	1.09	1.33	1.28	1.38
2-ethyl-1-hexanol	M+MeOH	0.92	0.93	0.90	0.59	1.17	1.23	0.87	0.81	0.76	0.77	0.76	0.70	0.62	0.73
2-ethyl-1-hexanol	M-H2O+H	0.94	0.92	0.85	0.43	0.96	1.05	0.97	0.81	0.84	0.86	0.91	0.83	0.84	0.79
ADBAC-C12	M+	0.89	0.66	0.72	0.86	1.65	1.49	0.87	1.04	0.96	0.98	0.89	0.96	0.84	0.86
Bis-2-ethylhexyl phthalate	M+H	0.95	0.86	0.84	0.88	1.31	1.19	0.83	0.52	0.49	0.50	0.44	0.58	0.45	0.55
Bis-2-ethyl-hexyl phthalate	M+Na	1.00	0.92	1.04	0.56	0.34	0.38	2.51	2.84	1.80	2.08	1.77	2.12	2.12	2.33
Brilliant Blue FCF	M+2Na+3H	0.12	0.16	0.09	0.01	0.21	0.26	0.16	0.05	0.04	0.00	0.00	0.04	0.05	0.00
Butyl glycidyl ether	M+H	0.95	0.94	0.86	0.55	1.01	1.08	0.61	0.67	0.74	0.66	0.79	0.56	0.64	0.61
Butyl glycidyl ether	M+Na	0.84	0.85	0.98	0.61	0.24	0.43	1.32	1.99	1.66	1.67	1.57	0.96	1.30	1.30
CAPDMA-C7H15	M+H	0.95	0.99	0.74	0.43	1.03	1.02	0.62	0.84	0.79	0.84	0.78	0.63	0.67	0.73
CAPDMA-C9H19	M+H	0.98	0.96	0.98	0.38	1.09	1.10	1.00	1.11	1.05	1.03	1.01	1.00	0.99	1.01
CAPDMA-C11H23	M+H	1.06	0.99	1.16	1.23	0.99	1.30	1.17	1.26	1.35	1.38	1.27	1.28	1.22	1.31
CAPDMA-C11H23	M+Na	1.25	1.47	2.97	0.00	1.77	4.35	0.43	1.18	0.58	0.49	0.51	0.63	0.79	0.89
CAPDMA-C13H27	M+H	0.81	0.59	0.68	0.78	0.57	0.68	1.00	1.11	0.95	0.96	0.99	0.98	0.78	0.76
CAPHS-C7H15	M+	0.94	0.91	0.71	0.41	1.20	1.20	0.42	0.39	0.38	0.37	0.40	0.43	0.38	0.41
CAPHS-C9H19	M+	0.94	0.97	0.74	0.45	1.29	1.30	0.48	0.46	0.43	0.43	0.50	0.48	0.45	0.45
CAPHS-C11H23	M+	0.91	0.88	0.76	0.51	1.13	1.36	0.45	0.46	0.46	0.49	0.56	0.52	0.46	0.46
CAPHS-C13H27	M+	0.75	0.64	0.51	0.35	0.89	1.29	0.35	0.38	0.35	0.34	0.35	0.38	0.30	0.32
CAPHS-C15H31	M+	0.46	0.38	0.19	0.13	0.41	0.58	0.23	0.19	0.15	0.15	0.23	0.13	0.10	0.09
Dazomet	M+H	0.24	0.09	0.04	0.00	0.01	0.00	0.30	0.05	-0.02	0.01	0.01	0.02	0.00	0.01
Didecyldimethylammonium	M+	0.46	0.29	0.25	0.21	0.27	0.18	0.60	0.39	0.29	0.21	0.44	0.19	0.19	0.20
Diethanolamine	M+H	0.97	0.95	0.20	0.06	1.01	0.94	0.16	0.14	0.15	0.14	0.17	0.15	0.15	0.16
Diethanolamine	M+Na	1.66	1.55	0.13	0.00	0.16	0.87	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Glutaraldehyde	M+H	0.91	0.80	0.49	-0.27	0.59	0.87	0.38	0.00	0.43	0.51	0.00	0.41	0.44	0.46
Glutaraldehyde	M+Na	0.73	0.88	0.49	0.99	0.19	0.48	2.58	2.62	2.44	2.56	2.34	2.13	2.29	2.25
Glutaraldehyde	4M+H2O+Na	0.66	0.65	0.24	0.02	0.40	0.58	0.23	0.20	0.15	0.12	0.16	0.22	0.19	0.21
NPE-EO5	M+H	0.69	0.58	0.46	0.38	1.10	1.62	0.47	0.35	0.38	0.33	0.34	0.38	0.34	0.32
NPE-EO5	M+Na	0.70	0.65	0.69	0.71	0.43	0.62	1.30	1.27	1.22	1.18	1.09	1.27	1.21	1.11
NPE-EO6	M+H	0.69	0.56	0.42	0.35	1.21	1.81	0.44	0.31	0.34	0.29	0.31	0.34	0.32	0.28
NPE-EO6	M+Na	0.66	0.60	0.62	0.63	0.45	0.71	1.24	1.06	1.05	0.99	0.90	1.08	1.02	0.92
NPE-EO7	M+H	0.69	0.55	0.42	0.34	1.30	1.92	0.45	0.29	0.33	0.27	0.29	0.34	0.30	0.27
NPE-EO7	M+Na	0.63	0.56	0.53	0.47	0.38	0.67	1.30	0.94	0.95	0.86	0.82	0.97	0.95	0.85
NPE-EO8	M+H	0.70	0.54	0.42	0.31	1.24	1.90	0.45	0.28	0.30	0.25	0.27	0.31	0.29	0.26
NPE-EO8	M+Na	0.63	0.53	0.49	0.39	0.37	0.67	1.27	0.81	0.82	0.73	0.69	0.82	0.80	0.72

NPE-EO9	M+H	0.71	0.54	0.41	0.29	1.20	1.93	0.44	0.26	0.28	0.24	0.26	0.30	0.27	0.24
NPE-EO9	M+Na	0.64	0.53	0.48	0.33	0.40	0.72	1.19	0.73	0.69	0.62	0.57	0.66	0.68	0.60
NPE-EO10	M+H	0.72	0.54	0.40	0.27	1.12	1.83	0.44	0.27	0.27	0.24	0.25	0.28	0.27	0.25
NPE-EO10	M+Na	0.65	0.54	0.47	0.31	0.40	0.75	1.10	0.66	0.60	0.54	0.47	0.57	0.58	0.52
NPE-EO37	M+2H	0.88	0.67	0.54	0.25	1.00	1.39	0.57	0.36	0.38	0.34	0.36	0.29	0.38	0.34
NPE-EO37	M+2Na	0.59	1.87	0.00	0.00	0.35	0.00	ND	ND	ND	ND	ND	ND	ND	ND
PEG-EO8	M+H	0.86	0.89	0.58	1.18	0.80	0.96	0.50	0.42	0.66	0.52	0.70	0.58	0.60	0.58
PEG-EO8	M+Na	0.61	0.74	0.38	0.50	0.28	0.51	1.49	1.16	1.32	1.06	1.35	1.65	1.39	1.48
PEG-EO9	M+H	0.89	0.87	0.63	0.65	0.79	0.93	0.51	0.52	0.65	0.53	0.67	0.60	0.65	0.61
PEG-EO9	M+Na	0.67	0.74	0.44	-0.06	0.27	0.49	1.36	1.39	1.25	1.12	1.28	1.51	1.42	1.40
PEG-EO10	M+H	0.88	0.88	0.56	0.66	0.83	0.86	0.73	0.52	0.74	0.63	0.76	0.64	0.63	0.73
PEG-EO10	M+Na	0.67	0.75	0.37	-0.23	0.28	0.45	2.05	1.62	1.64	1.53	1.62	1.74	1.51	1.85
PEG-EO11	M+H	0.88	0.84	0.58	0.54	0.88	0.96	0.68	0.50	0.70	0.63	0.75	0.67	0.69	0.76
PEG-EO11	M+Na	0.62	0.68	0.34	-0.37	0.28	0.48	1.88	1.53	1.72	1.61	1.69	1.89	1.71	1.94
PEG-EO12	M+H	0.84	0.83	0.65	0.78	0.86	0.87	0.58	0.43	0.67	0.63	0.56	0.70	0.66	0.73
PEG-EO12	M+Na	0.61	0.68	0.40	-0.20	0.28	0.45	1.49	1.32	1.46	1.45	1.27	1.66	1.59	1.75
PPG-PO4	M+H	0.73	0.76	0.71	15.28	1.17	1.08	0.27	0.45	0.36	0.53	-0.19	0.07	0.46	0.31
PPG-PO4	M+Na	0.61	0.66	-0.75	-2.22	0.37	0.55	0.68	1.36	0.52	1.62	-0.45	0.93	1.11	1.00
PPG-PO5	M+H	0.88	0.90	0.30	1.88	1.44	1.25	0.57	0.49	0.62	0.65	0.53	0.45	0.57	0.59
PPG-PO5	M+Na	0.79	0.81	0.22	-0.52	0.45	0.58	1.24	1.44	1.17	1.40	0.76	1.05	1.15	1.25
PPG-PO6	M+H	0.90	0.91	0.46	0.55	1.47	1.41	0.70	0.58	0.78	0.78	0.73	0.74	0.74	0.76
PPG-PO6	M+Na	0.83	0.85	0.76	0.30	0.33	0.55	1.57	1.68	1.24	1.37	0.59	1.29	1.29	1.38
PPG-PO7	M+H	0.91	0.91	0.72	0.64	1.49	1.42	0.73	0.59	0.86	0.78	1.00	0.88	0.86	0.82
PPG-PO7	M+Na	0.82	0.86	1.12	0.54	0.30	0.49	1.66	1.63	1.42	1.31	1.35	1.48	1.45	1.42
PPG-PO8	M+H	0.93	0.99	0.72	0.82	1.59	1.49	0.73	0.59	0.87	0.85	1.03	0.90	0.82	0.81
PPG-PO8	M+Na	0.81	0.91	1.06	0.54	0.26	0.41	1.58	1.55	1.29	1.34	1.30	1.34	1.23	1.25
PPG-PO9	M+H	0.96	0.98	0.94	1.03	1.60	1.62	0.81	0.63	0.84	0.84	0.96	0.98	0.88	0.88
PPG-PO9	M+Na	0.86	0.89	1.27	0.56	0.23	0.39	1.70	1.65	1.29	1.35	1.19	1.41	1.32	1.38
PPG-PO10	M+H	0.93	0.94	0.93	1.32	1.65	1.91	0.87	0.71	1.02	0.87	1.14	1.10	0.97	1.05
PPG-PO10	M+Na	0.81	0.86	1.25	0.72	0.27	0.46	1.92	1.93	1.68	1.55	1.63	1.70	1.52	1.80

Results – Qualitative evaluation of chemical additives in water samples

Job Start Date:	11/6/2015
Job End Date:	11/15/2015
State:	West Virginia
County:	Monongalia
API Number:	47-061-01707-00-00
Operator Name:	Northeast Natural Energy LLC
Well Name and Number:	MIP 3H
Longitude:	-79.97612300
Latitude:	39.60178300
Datum:	NAD83
Federal/Tribal Well:	NO
True Vertical Depth:	7,483
Total Base Water Volume (gal):	10,647,966
Total Base Non Water Volume:	0

Table ESI11. FracFocus disclosure for well MIP 3H – Basic Information.

		2000710001010	1
		Max Conc in	Max Conc in
		Additive	HF Fluid
Ingredients	CAS #	(% by mass)	(% by mass)
Water (Including Mix Water Supplied by Client)*	NA		87.63568%
Quartz, Crystalline silica	14808-60-7	99.06784	12.21724%
Hydrochloric acid	7647-01-0	0.66726	0.08228%
Ammonium sulfate	7783-20-2	0.06845	0.00844%
Guar gum	9000-30-0	0.05865	0.00724%
Acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, sodium salt polymer	38193-60-1	0.05052	0.00623%
Glutaraldehyde	111-30-8		0.00349%
Ethanol, 2,2',2"-nitrilotris-,1,1',1"-tris(dihydrogen phosphate), sodium salt	68171-29-9		0.00120%
Diammonium peroxidisulphate	7727-54-0	0.00601	0.00074%
Polymer of 2-acrylamido-2-methylpropanesulfonic acid sodium salt and methyl acrylate	136793-29-8	0.00541	0.00067%
Alkyl(c12-16) dimethylbenzyl ammonium chloride	68424-85-1	0.00506	0.00062%
Sodium erythorbate	6381-77-7	0.00436	0.00054%
Trisodium ortho phosphate	7601-54-9	0.00427	0.00053%
Urea	57-13-6	0.00332	0.00041%
Polypropylene glycol	25322-69-4	0.00294	0.00036%
Methanol	67-56-1	0.00252	0.00031%
Fatty acids, tall-oil	61790-12-3	0.00156	0.00019%
Thiourea, polymer with formaldehyde and 1- phenylethanone	68527-49-1	0.00129	0.00016%
Ethylene Glycol	107-21-1	0.00121	0.00015%
Non-crystalline silica (impurity)	7631-86-9	0.00084	0.00010%
Vinylidene chloride/methylacrylate copolymer	25038-72-6	0.0008	0.00010%
Sodium sulfate	7757-82-6	0.00078	0.00010%

Table ESI12. FracFocus disclosure for well MIP 3H. Proppant Transport, Supplier – Schlumberger, Purpose - Corrosion Inhibitor, Scale Inhibitor, Biocide, AntiFoam Agent, Acid, Breaker, Gelling Agent, Friction Reducer, Iron Control Agent, Fluid Loss Additive.

Alcohols, C14-15, ethoxylated (7EO)	68951-67-7	0.00061	0.00008%
Ethanol	64-17-5	0.00061	0.00007%
Propargyl alcohol	107-19-7	0.00041	0.00005%
2-Propenamid (impurity)	79-06-1	0.00017	0.00002%
Hexadec-1-ene	629-73-2	0.00014	0.00002%
1-Octadecene (C18)	112-88-9	0.00007	0.00001%
Dimethyl siloxanes and silicones	63148-62-9	0.00005	0.00001%
Tetrasodium ethylenediaminetetraacetate	64-02-8	0.00009	0.00001%
Dodecamethylcyclohexasiloxane	540-97-6		
Siloxanes and silicones, dimethyl, reaction products with silica	67762-90-7	0.00001	
Octamethylcyclotetrasiloxane	556-67-2		
poly(tetrafluoroethylene)	9002-84-0	0.00001	
Formaldehyde	50-00-0	0.00001	
Copper(II) sulfate	7758-98-7		
Decamethyl cyclopentasiloxane	541-02-6		
Magnesium silicate hydrate (talc)	14807-96-6	0.00002	

		Max Conc in	Max Conc in
		Additive	HF Fluid
Ingredients	CAS #	(% by mass)	(% by mass)
Water	7732-18-5	50.0000	0.01575%
Polyacrylamide-co-acrylic acid	2594478	32.0000	0.01008%
Sodium Chloride	7647-14-5	15.0000	0.00472%
Alcohol Ethoxylate Surfactants	Trade	5.0000	0.00157%
Petroleum Distillate	64742-47-8	25.0000	0.00008%

Table ESI13. FracFocus disclosure for well MIP 3H. FR Pro 150, Supplier – ECM, Purpose – Friction Reduction.

Job Start Date:	10/28/2015
Job End Date:	11/05/2015
State:	West Virginia
County:	Monongalia
API Number:	47-061-01699-00-00
Operator Name:	Northeast Natural Energy LLC
Well Name and Number:	MIP 5H
Longitude:	-79.97615200
Latitude:	39.60183300
Datum:	NAD83
Federal/Tribal Well:	NO
True Vertical Depth:	7,530
Total Base Water Volume (gal):	9,961,350
Total Base Non Water Volume:	0

Table ESI14. FracFocus disclosure for well MIP 5H – Basic Information.

Table ESI15. FracFocus disclosure for well MIP 5H. Proppant Transport, Supplier – Schlumberger, Purpose - Corrosion Inhibitor, Scale Inhibitor, Biocide, Acid, Breaker, Gelling Agent, Friction Reducer, Iron Control Agent, Fluid Loss Additive, Propping Age.

		Max Conc in	Max Conc in
Ingredients	CAS #	(% by mass)	(% by mass)
Water (Including Mix Water Supplied by Client)*	NA		87.58016
Quartz, Crystalline silica	14808-60-7	98.77034	12.26228
Hydrochloric acid	7647-01-0	0.90405	0.11223
Ammonium sulfate	7783-20-2	0.12127	0.01506
Acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, sodium salt polymer	38193-60-1	0.08951	0.01111
Glutaraldehyde	111-30-8	0.03083	0.00383
Guar gum	9000-30-0	0.02213	0.00275
Polymer of 2-acrylamido-2-methylpropanesulfonic acid sodium salt and methyl acrylate	136793-29-8	0.00959	0.00119
Ethanol, 2,2',2''-nitrilotris-,1,1',1''-tris(dihydrogen phosphate), sodium salt	68171-29-9	0.00943	0.00117
Sodium erythorbate	6381-77-7	0.00589	0.00073
Urea	57-13-6	0.00589	0.00073
Alkyl(c12-16) dimethylbenzyl ammonium chloride	68424-85-1	0.00551	0.00068
Trisodium ortho phosphate	7601-54-9	0.00415	0.00051
Methanol	67-56-1	0.00332	0.00041
Fatty acids, tall-oil	61790-12-3	0.0021	0.00026
Thiourea, polymer with formaldehyde and 1- phenylethanone	68527-49-1	0.00174	0.00022
Sodium sulfate	7757-82-6	0.00137	0.00017
Non-crystalline silica (impurity)	7631-86-9	0.00128	0.00016
Ethylene Glycol	107-21-1	0.00118	0.00015
Alcohols, C14-15, ethoxylated (7EO)	68951-67-7	0.00082	0.0001
Ethanol	64-17-5	0.00066	0.00008
Propargyl alcohol	107-19-7	0.00055	0.00007
2-Propenamid (impurity)	65532	0.00029	0.00004
Hexadec-1-ene	629-73-2	0.00018	0.00002
Tetrasodium ethylenediaminetetraacetate	59940	0.00015	0.00002
Diammonium peroxidisulphate	7727-54-0	0.00008	0.00001
1-Octadecene (C18)	112-88-9	0.00009	0.00001
Dimethyl siloxanes and silicones	63148-62-9	0.00008	0.00001

Decamethyl cyclopentasiloxane	541-02-6	0.00001	
Siloxanes and silicones, dimethyl, reaction products with silica	67762-90-7	0.00001	
Octamethylcyclotetrasiloxane	556-67-2	0.00001	
Formaldehyde	50-00-0	0.00001	
Dodecamethylcyclohexasiloxane	540-97-6		
Copper(II) sulfate	7758-98-7		

		Max Conc in	Max Conc in
		Additive	HF Fluid
Ingredients	CAS #	(% by mass)	(% by mass)
Water	7732-18-5	50.0000	0.0024
Polyacrylamide-co-acrylic acid	2594478	32.0000	0.00154
Sodium Chloride	7647-14-5	15.0000	0.00072
Alcohol Ethoxylate Surfactants	Trade	5.0000	0.00024
Hydrotreated Petroleum Distillate	64742-47-8	25.0000	

Table ESI16. FracFocus disclosure for well MIP 5H. FR Pro 150, Supplier – ECM, Purpose – Friction reducer.

Figure ESI2. Confirmation of glutaraldehyde in HFF 3H. The protonated adduct, a hydrated and protonated adduct and a hydrated and sodiated adduct were observed of the parent compound as well as its dimer and trimer. This is in line with previous findings.³ Retention times matched those of the analytical standards, but due to the small m/z value of the parent compound, distinct fragments had m/z values out of the range of detection.

Table ESI17. Kendrick Mass Analysis of ADBAC in HFF 5H. ADBAC-C12, ADBAC-C14 and ADBAC-C16 were the dominant peaks, but trace levels of other ADBAC homologues were detected. The Kendrick Mass scaling factor for ADBAC is 0.998903.

				[N	1 ⁺]		
		Calculated				Kendrick	
	Molecular	Neutral	Accurate	Error	Kendrick	Mass	
	Formula	Mass	Mass	(ppm)	Mass	Defect	RT (min)
ADBAC-C6	$C_{15}H_{26}N^{+}$	220.2060	220.2060	0.2	219.9644	0.9644	11.0
ADBAC-C8	$C_{17}H_{30}N^{+}$	248.2373	248.2373	0.3	247.9650	0.9650	13.1
ADBAC-C10	$C_{19}H_{34}N^{+}$	276.2686	276.2686	0.2	275.9655	0.9655	15.8
ADBAC-C12	$C_{21}H_{38}N^{+}$	304.2999	304.2998	-0.1	303.9660	0.9660	18.0
ADBAC-C14	$C_{23}H_{42}N^{+}$	332.3312	332.3309	-0.7	331.9663	0.9663	19.9
ADBAC-C16	$C_{25}H_{46}N^{+}$	360.3625	360.3624	-0.3	359.9671	0.9671	21.3
ADBAC-C18	$C_{27}H_{50}N^{+}$	388.3938	388.3936	-0.4	387.9675	0.9675	22.4

Table ESI18. Kendrick Mass Analysis of PEG in FW 5H. Only PEG homologues present in the reference standard are included in this analysis because isomeric structures could be present in the sample. The Kendrick Mass scaling factor for PEG is 0.998903. The dominant observed mass for each homologue is marked in *bold*.

		[M+H]*						[1			[M+Na]⁺						
	Molecular Formula	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	RT (min)
PEG- EO5	C ₁₀ H ₂₂ O ₆	239.1489	239.1490	0.5	239.007	0.007	256.1755	256.1756	0.4	256.023	0.023	261.1309	261.1310	0.5	260.976	0.976	8.4
PEG- EO6	C ₁₂ H ₂₆ O ₇	283.1751	283.1753	0.7	283.007	0.007	300.2017	300.2018	0.3	300.023	0.023	305.1571	305.1572	0.4	304.975	0.975	8.8
PEG- EO7	$C_{14}H_{30}O_8$	327.2013	327.2015	0.5	327.007	0.007	344.2279	344.2280	0.3	344.023	0.023	349.1833	349.1833	0.2	348.975	0.975	9.2
PEG- EO8	$C_{16}H_{34}O_9$	371.2276	371.2278	0.7	371.007	0.007	388.2541	388.2543	0.5	388.023	0.023	393.2095	393.2095	0.0	392.975	0.975	9.5
PEG- EO9	C ₁₈ H ₃₈ O ₁₀	415.2538	415.2542	1.1	415.007	0.007	432.2803	432.2808	1.2	432.023	0.023	437.2357	437.2360	0.7	436.976	0.976	9.6
PEG- EO10	C ₂₀ H ₄₂ O ₁₁	459.2800	459.2802	0.4	459.007	0.007	476.3065	476.3069	0.8	476.023	0.023	481.2619	481.2621	0.3	480.976	0.976	9.8
PEG- EO11	C ₂₂ H ₄₆ O ₁₂	503.3062	503.3068	1.2	503.007	0.007	520.3328	520.3334	1.2	520.024	0.024	525.2881	525.2887	1.1	524.976	0.976	10
PEG- EO12	C ₂₄ H ₅₀ O ₁₃	547.3324	547.333	1.1	547.007	0.007	564.3590	564.3596	1.1	564.024	0.024	569.3144	569.3149	0.9	568.976	0.976	10.2
PEG- EO13	$C_{26}H_{54}O_{14}$	591.3586	591.359	0.6	591.007	0.007	608.3852	608.3857	0.8	608.023	0.023	613.3406	613.3409	0.6	612.976	0.976	10.3
PEG- EO14	C ₂₈ H ₅₈ O ₁₅	635.3848	635.3854	0.9	635.007	0.007	652.4114	652.4119	0.8	652.023	0.023	657.3668	657.3672	0.7	656.976	0.976	10.4

Table ESI19. Kendrick Mass Analysis of polypropylene glycol (PPG) in FW 5H. Only PPG homologues present in the reference standard are included in this analysis because isomeric structures could be present in the sample. The Kendrick Mass scaling factor for PPG is 0.999279. The dominant observed mass for each homologue is marked in *bold*.

						[M+NH4]*					[M+Na]⁺						
	Molecular Formula	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	Calculated Mass	Accurate Mass	Error	Kendrick Mass	Kendrick Mass Defect	RT (min)
PPG-PO4	$C_{12}H_{26}O_5$	251.1853	251.1855	0.8	251.004	0.0043	268.2118	268.2121	1.1	268.019	0.0186	273.1672	273.1674	0.6	272.970	0.9704	10.9
PPG-PO5	$C_{15}H_{32}O_6$	309.2272	309.2271	-0.2	309.004	0.0041	326.2537	326.2537	0.0	326.018	0.0184	331.2091	331.2090	-0.3	330.970	0.9701	11.9
PPG-PO6	C ₁₈ H ₃₈ O ₇	367.2690	367.2689	-0.4	367.004	0.0040	384.2956	384.2955	-0.3	384.018	0.0183	389.2510	389.2508	-0.4	388.970	0.9700	13.0
PPG-PO7	C ₂₁ H ₄₄ O ₈	425.3109	425.3110	0.2	425.004	0.0042	442.3374	442.3378	0.9	442.019	0.0187	447.2928	447.2929	0.1	446.970	0.9703	14.3
PPG-PO8	C ₂₄ H ₅₀ O ₉	483.3528	483.3529	0.3	483.004	0.0043	500.3793	500.3796	0.6	500.019	0.0187	505.3347	505.3347	0.0	504.970	0.9702	15.4
PPG-PO9	C ₂₇ H ₅₆ O ₁₀	541.3946	541.3950	0.7	541.004	0.0045	558.4212	558.4216	0.7	558.019	0.0188	563.3766	563.3768	0.4	562.970	0.9704	16.6
PPG-PO10	$C_{30}H_{62}O_{11}$	599.4365	599.4370	0.9	599.005	0.0046	616.4630	616.4637	1.1	616.019	0.0191	621.4184	621.4188	0.6	620.971	0.9706	17.5
PPG-PO11	$C_{33}H_{68}O_{12}$	657.4784	657.4791	1.1	657.005	0.0049	674.5049	674.5057	1.2	674.019	0.0192	679.4603	679.4607	0.6	678.971	0.9706	18.3

Figure ESI3. Confirmation of 2-butoxyethanol (2-BE). RT of 10.7 and the exact mass of the sodiated adduct (m/z = 141.0667, Δm = 0.92 ppm) matched between reference standard and sample. The MS/MS fragments with m/z values of 57.0707 and 105.0034 (overshadowed by the 104.9635 value in this image) match those obtained in compound tuning (see Table ESI8). The MS/MS fragment with an m/z value of 91.0545 matches a dominant fragment observed in a reference standard run in the same sequence as the sample.

CITATIONS

- 1 J. D. Rogers, T. L. Burke, S. G. Osborn and J. N. Ryan, A Framework for Identifying Organic Compounds of Concern in Hydraulic Fracturing Fluids Based on Their Mobility and Persistence in Groundwater, *Environ. Sci. Technol. Lett.*, 2015, **2**, 158–164.
- 2 M. Elsner and K. Hoelzer, Quantitative Survey and Structural Classification of Hydraulic Fracturing Chemicals Reported in Unconventional Gas Production, *Environ. Sci. Technol.*, 2016, **50**, 3290– 3314.
- 3 I. Ferrer and E. M. Thurman, Analysis of hydraulic fracturing additives by LC/Q-TOF-MS, *Anal. Bioanal. Chem.*, 2015, **407**, 6417–6428.
- 4 E. G. Elliott, A. S. Ettinger, B. P. Leaderer, M. B. Bracken and N. C. Deziel, A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity, *J. Expo. Sci. Environ. Epidemiol.*, 2017, **27**, 90–99.
- G. A. Kahrilas, J. Blotevogel, P. S. Stewart and T. Borch, Biocides in Hydraulic Fracturing Fluids: A Critical Review of Their Usage, Mobility, Degradation, and Toxicity, *Environ. Sci. Technol.*, 2015, 49, 16–32.
- W. T. Stringfellow, J. K. Domen, M. K. Camarillo, W. L. Sandelin and S. Borglin, Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing, *J. Hazard. Mater.*, 2014, 275, 37–54.
- 7 M. Elsner and K. Schreglmann, Quantitative Survey and Structural Classification of Fracking Chemicals Reported in Unconventional Gas Exploitation, 2015, **17**, 12418.
- 8 E. M. Thurman, I. Ferrer, J. Blotevogel and T. Borch, Analysis of Hydraulic Fracturing Flowback and Produced Waters Using Accurate Mass: Identification of Ethoxylated Surfactants, *Anal. Chem.*, 2014, **86**, 9653–9661.
- 9 E. M. Thurman, I. Ferrer, J. Rosenblum, K. Linden and J. N. Ryan, Identification of Polypropylene Glycols and Polyethylene Glycol Carboxylates in Flowback and Produced Water from Hydraulic Fracturing, *J. Hazard. Mater.*, 2017, **323**, 11–17.