Electronic supplementary information

Cr(VI) Uptake and Reduction by Biogenic Iron (Oxyhydr)oxides

Andrew H. Whitaker,¹ Jasquelin Peña,² Mathilde Amor,² and Owen W. Duckworth^{1,*}

¹Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695-

7620

²Institute of Earth Surface Dynamics, Faculté des Géoscience et de l'Environnement, Université de Lausanne, Géopolis, 1015 Lausanne, Switzerland

- 8 pages, 4 figures, 4 tables -

Table of Contents

Figure S1. Image of BIOS collected for use in this study	S2
Figure S2. Fe K-edge XANES spectra for pre-Cr sorption (Day 0) and post-Cr sorption 2LFh, BIOS, and BIOS with 0.135 M ferrozine	(Day 14) S3
Figure S3. X-ray diffractograms of 2LFh and BIOS	S4
Figure S4. Mass normalized sorption of Cr onto 2LFh and BIOS as a function of disconcentration.	solved Cr S5
Table S1. Standard spectra used in LCFs for BIOS and 2LFh K-edge XANES spectra and 14, and Cr K-edge XANES standard spectra used in BIOS LCFs	on Day 0 S6
Table S2. Elemental composition of the BIOS	S7
Table S3. Results of LCF fits for Cr sorbed to BIOS	S7
Table S4. Estimated mol% Cr(VI) sorbed to BIOS, as determined by pre-edge integr LCFs	ation and
References	S8

Figure S1. The BIOS collected at Rocky Branch Creek (35°46'49"N 78°40'01"W; Raleigh, North Carolina).¹⁻³

Figure S2. Fe K-edge XANES spectra and pre-Cr sorption (Day 0) and post-Cr sorption (Day 14) 2LFh, BIOS, and BIOS with 0.135 M ferrozine. Spectra are fit with ferrihydrite, an Fe(III) standard, and pyrite, an Fe(II) standard. In all cases, LCFs (black dotted lines) indicate 100% Fe(III).

Figure S3. X-ray diffractograms of BIOS and 2LFh collected with Rigaku SmartLab X-ray diffractometer with graphite monochromated Cu K- α radiation. The sharp peak at 26.65 °2 Θ in the BIOS diffraction pattern is due to minor amounts of quartz that make up less than 10% of the BIOS.

Figure S4. Mass normalized sorption of Cr onto 2LFh (red circles) and BIOS (orange triangles) as a function of dissolved Cr. All sorption data were modeled with a Freundlich fit (solid lines). Initial experimental conditions: 1 g L⁻¹ sorbent (dry weight basis), Cr(VI) = 0.96 mM, I = 0.01 M NaCl, pH = 7.0 ± 0.2 . The Freundlich sorption constant (K_f) and exponential constant (n) for 2LFh was $2 \pm 1 \mu$ mol Cr g⁻¹ solid and 0.69 ± 0.07 , respectively, whereas for BIOS they were $3.2 \pm 0.8 \mu$ mol Cr g⁻¹ solid and 0.63 ± 0.04 , respectively.

Table S1. Standard spectra used in LCFs for BIOS and 2LFh K-edge XANES spectra on Day 0 and 14, and Cr K-edge XANES standard spectra used in BIOS LCFs. Standards in bold italics were used for the final fits.⁴⁻⁹

Fe EXAFS standards
Ferrihydrite
Hydrous ferric oxide w/Si
Hydrous ferric oxide
Goethite
Hematite
Lepidocrocite
Nano-goethite
Magnetite
Fe(III)-peat
Fe(III)-chloride
Fe(III)-phosphate
Fe(III)-rhizoferrin (carboxylate complex)
Fe(III)-protochelin (catecholate complex)
Pyrite
Siderite
Cr XANES standards
Cr(III)-DFOB (hydroxamate complex)
Cr(III)-rhizoferrin (carboxylate complex)
Cr(III)-protochelin (catecholate complex)
Cr(III)2Fe8 (mixed Cr(III)-Fe(III)-(oyxhydr)oxide)
Cr(VI) sorbed to 2LFh (day 14)

Table S2. Elemental composition of the BIOS in g kg⁻¹ dry solid. Synthetic 2LFh contained 553.3 g Fe kg⁻¹ sorbent. Fe(II) concentrations in the BIOS were < 0.5% of the total Fe. Water chemistry for the site is reported elsewhere.¹

Sample	Fe	Al	Mn	Si	Ca	K	Mg	Na	Cr	Pb	Zn	Cu	Р	S	С	Ν
BIOS	370.4	3.2	1.6	11.9	2.3	0.3	0.5	BDL	BDL	0.9	0.2	BDL	2.1	2.0	68.5	6.0

Table S3. Results of LCF fits for Cr sorbed to BIOS. Uncertainty from LCFs is reported as the software output but is estimated to be 10%.^{10, 11}

days exposed	Cr(VI) sorbed to 2LFh	Cr(III)-Rhizoferrin	Cr2Fe8	R-value
1	85.0 ± 0.7	15.0 ± 0.1	0	0.00009
3	65.7 ± 0.4	9.6 ± 0.4	24.7 ± 0.5	0.00012
7	68.8 ± 0.1	0	31.2 ± 0.1	0.00017
14	51.9 ± 0.3	0	48.1 ± 0.2	0.0011

Table S4. Estimated mol% Cr(VI) sorbed to BIOS, as determined by pre-edge integration and LCFs. Uncertainty from the pre-edge integration is estimated to be 10% of the quantity; uncertainty from LCFs is reported as the software output but is estimated to be 10%.^{10, 11}

	pre-edge integration	LCFs
days exposed	mol % Cr(VI)	mol % Cr(VI)
1	73 ± 7	85.0 ± 0.7
3	54 ± 5	65.7 ± 0.4
7	61 ± 6	68.8 ± 0.1
14	55 ± 6	52.0 ± 0.2

References

1. Almaraz, N.; Whitaker, A. H.; Andrews, M. Y.; Duckworth, O. W., Assessing Biomineral Formation by Iron-oxidizing Bacteria in a Circumneutral Creek. *Journal of Contemporary Water Research & Education* **2017**, *160*, (1), 60-71.

2. Andrews, M. Y.; Duckworth, O., A universal assay for the detection of siderophore activity in natural waters. *Biometals* **2016**, *29*, (6), 1085-1095.

3. Sowers, T. D.; Harrington, J. M.; Polizzotto, M. L.; Duckworth, O. W., Sorption of arsenic to biogenic iron (oxyhydr) oxides produced in circumneutral environments. *Geochimica et Cosmochimica Acta* **2017**, *198*, 194-207.

4. Harrington, J. M.; Bargar, J. R.; Jarzecki, A. A.; Roberts, J. G.; Sombers, L. A.; Duckworth, O. W., Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. *BioMetals* **2012**, *25*, (2), 393-412.

5. Harrington, J. M.; Parker, D. L.; Bargar, J. R.; Jarzecki, A. A.; Tebo, B. M.; Sposito, G.; Duckworth, O. W., Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. *Geochimica et Cosmochimica Acta* **2012**, *88*, 106-119.

6. O'day, P. A.; Rivera, N.; Root, R.; Carroll, S. A., X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. *American Mineralogist* **2004**, *89*, (4), 572-585.

7. Whitaker, A. H. M., F. Marc, Peak D.; Thompson, A.; Duckworth, Owen W, Elucidating the structural diversity of bacteriogenic iron oxides formed in circumneutral pH environments. In *American Chemical Society*, San Francisco, CA, 2017.

8. Duckworth, O. W.; Akafia, M. M.; Andrews, M. Y.; Bargar, J. R., Siderophore-promoted dissolution of chromium from hydroxide minerals. *Environmental Science: Processes & Impacts* **2014**, *16*, 1348 - 1359.

9. Saad, E. M.; Sun, J.; Chen, S.; Borkiewicz, O. J.; Zhu, M.; Duckworth, O. W.; Tang, Y., Siderophore and Organic Acid Promoted Dissolution and Transformation of Cr(III)-Fe(III)-(oxy)hydroxides. *Environmental Science & Technology* **2017**, *51*, (6), 3223-3232.

10. Isaure, M.-P.; Laboudigue, A.; Manceau, A.; Sarret, G.; Tiffreau, C.; Trocellier, P.; Lamble, G.; Hazemann, J.-L.; Chateigner, D., Quantitative Zn speciation in a contaminated dredged sediment by μ -PIXE, μ -SXRF, EXAFS spectroscopy and principal component analysis. *Geochimica et Cosmochimica Acta* **2002**, *66*, (9), 1549-1567.

11. Manceau, A.; Lanson, B.; Schlegel, M. L.; Harge, J. C.; Musso, M.; Eybert-Berard, L.; Hazemann, J.-L.; Chateigner, D.; Lamble, G. M., Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. *American Journal of Science* **2000**, *300*, (4), 289-343.