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Testing Ag SERS Substrates 
 
Several different Ag SERS substrates were tested for their application to aerosol particle studies. 
Ag nanoparticles (AgNPs) were synthesized according to the method by Leopold and Lendl.1 
Briefly, a mixture of NaOH and hydroxylamine hydrochloride was added to a solution of AgNO3. 
The size of the resulting nanoparticles depended on the speed of mixing of the two solutions.  
Rapid mixing led to smaller nanoparticles (~30 nm) while mixing dropwise led to larger 
nanoparticles (~60 nm). Ag bipyramidal nanoparticles were synthesized according to the method 
by Zhang et al.2 Briefly, a mixture of AgNO3, sodium citrate, BSPP, and NaOH was irradiated 
with a mercury lamp for 18 hours. The resulting colloidal solutions of AgNPs and Ag bipyramids 
were drop-coated onto clean quartz slides and dried in a desiccator to create SERS substrates in 
the same manner as Craig et al.3 
 
A NanoSight/Malvern nanoparticle tracking analysis (NTA) system was used to measure the size 
(hydrodynamic diameter) of the nanoparticles in solution based on their Brownian motion.4-6 The 
Ag bipyramids showed a bimodal distribution with modes at 60.191 and 116.44 nm.  The Ag 
nanospheres small and large had modes at 98.78 and 139.55 nm, respectively. Size distributions 
are shown in Figure S1. 
 

  
Figure S1. NTA size distributions (hydrodynamic diameter) of Ag nanoparticle colloidal 
solutions. 
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Laboratory-generated (NH4)2SO4 particles were impacted onto the SERS substrates, as well as a 
plain quartz substrate and analyzed for SERS enhancement. Raman spectra were collected for 1 
accumulation with 1 s acquisition time for the range of 200 – 1900 cm-1 and are shown in Figure 
S2. Similar to the substrate comparison discussed in the main text, the Ag foil SERS substrate 
yielded the best spectral enhancement. Enhancement factors for the ν(SO4

2-) mode were calculated 
to be 5.6, 3.1, 2.8, and 2.4 for the Ag foil, AgNPs (large), Ag bipyramids, and AgNPs (small), 
respectively. 
 
 

 
 
Figure S2. Comparison of Raman spectra of (NH4)2SO4 particles for different types of Ag SERS 
substrates.  Enhancement factors were calculated to be 5.6, 3.1, 2.8, and 2.4 for the Ag foil, AgNPs 
(large), Ag bipyramids, and AgNPs (small), respectively. 
 
 
Ag Foil Characterization 
 
For Ag foil substrates, small pieces were cut from a 2” x 7.50” x 0.002” Ag foil sheet. An optical, 
scanning electron microscopy (SEM) and atomic force microscopy (AFM) images (height and 
amplitude) of the Ag foil surface are shown in Figure S3. The roughness of the foil was ≤ 100 nm 
as seen from the heights in Figure S3c. 
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Figure S3. a) Optical, b) SEM, and c) AFM height, and d) AFM amplitude images of the Ag foil 
surface. 
 
 
 
Raman Spectra 
 
All Raman spectra and the average spectrum for 400 nm, 600 nm, and 800 nm PSL particles from 
both quartz and Ag foil substrates are shown in Figures S2-S4. All Raman spectra and the average 
spectrum for 400 nm, 600 nm, and 800 nm (NH4)2SO4 particles from both quartz and Ag foil 
substrates are shown in Figures S5-S7. All Raman spectra and the average spectrum for 400 nm, 
600 nm, and 800 nm NaNO3 particles from both quartz and Ag foil substrates are shown in Figures 
S8-S10.  
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Figure S4. Raman spectra for 400 nm PSL particles on quartz (top) and Ag foil (bottom) 
substrates.  
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Figure S5. Raman spectra for 600 nm PSL particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S6. Raman spectra for 800 nm PSL particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S7. Raman spectra for 400 nm (NH4)2SO4 particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S8. Raman spectra for 600 nm (NH4)2SO4 particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S9. Raman spectra for 800 nm (NH4)2SO4 particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S10. Raman spectra for 400 nm NaNO3 particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S11. Raman spectra for 600 nm NaNO3 particles on quartz (top) and Ag foil (bottom) 
substrates. 
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Figure S12. Raman spectra for 800 nm NaNO3 particles on quartz (top) and Ag foil (bottom) 
substrates. 
 
 
Ambient Aerosol Sample Optical Images 
 
SERS spectra were collected for 150 nm size-selected ambient aerosol particles with point-by-
point automated mapping with 0.25 μm step size. Figure S11 shows the Raman spectra and 
corresponding optical image for these sample with the mapped region and the location of the 
spectra highlighted. The ambient aerosol may appear larger in the optical image due to spreading 
upon impaction7,8 or agglomeration, however, the large particles were avoided for this analysis. 
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Figure S13.  Raman spectra for 150 nm size-selected ambient aerosol particles with color 
coordinated highlights for their respective locations within the mapped region (indicated by the 
yellow square).   
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