Supporting Information

Reduction of PCE and TCE by Magnetite Revisited

Johnathan D. Culpepper¹, Michelle M. Scherer¹, Thomas C. Robinson¹, Anke Neumann², David Cwiertny¹, Drew E. Latta^{1*}

¹Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242 USA

²School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

12 pages, 5 figures, 5 tables -

Table of Contents

Analytical methods for chlorinated ethenes and reduction products	S2					
Calculation of k _{field} and t _{1/2 field}						
Table S1. PCE/TCE with Magnetite alone	S3					
Table S2. PCE/TCE Magnetite + aqueous Fe(II) reactors with products.	S4					
Table S3. PCE/TCE with Magnetite + aqueous Fe(II) reactors without products.	S5					
Figure S1. Reactor Photograph	S6					
Figure S2. X-Ray Diffraction spectra of a TCE reactor with Magnetite	S7					
Figure S3. Reproduction of Sivavec Patent Data	S8					
Table S4. PCE/TCE with aqueous Fe(II) alone and no products	S9					
Table S5. PCE/TCE with aqueous Fe(II) alone, with products	S10					
Figure S4. X-Ray Diffraction spectra of a TCE reactor with Fe (II) alone	S11					
Figure S5. Mossbauer Spectra of white precipitate in a TCE reactor with Fe (II) alone	S12					
References.	S12					

Analytical methods for chlorinated ethenes and reduction products

PCE and TCE were quantified with GC-ECD after a liquid-liquid extraction of 0.25 to 1 mL of sample containing both the aqueous and solid phases added to 2 mL of hexanes. The ECD column was a Supelco Equity-5 (0.25 mm diameter x 30 m length, 0.5 μ m film thickness). The carrier gas was nitrogen at a constant total flow velocities of 1.0 mL/min and a 10:1 inlet split ratio. The detector make-up gas was 95% Argon: 5% methane with flow of 30 mL/min. The oven was programmed for an initial hold of 1 min at 45 °C, then 10 °C/min to 200 °C. The ECD method detection limits are 0.05 μ moles/L PCE and 0.02 μ moles/L TCE for (*n* = 15).

The daughter products ethane, ethylene, acetylene, the dichloroethenes, and vinyl chloride were detected using a GC-FID. The column used was an Agilent GS-GasPro column (0.320 mm diameter x 30 m length). The carrier gas was nitrogen at a constant total flow of 1.4 mL/min and 7.5:1 inlet split ratio. The detector air flow was 450 mL/min, hydrogen flow 40 mL/min, and make-up gas type was nitrogen and a combined flow rate of 35 mL/min. The oven was set for an isothermal run of 4.5 min at 70 °C. The C₂ gas analysis was done with 100 µL headspace injections into the column. The detection limits for the FID method are 1.35 µmoles/L ethane, 1.36 µmoles/L ethylene and 1.34 µmoles/L acetylene for (n = 10). Products with carbon number >C₂ were not analyzed in this study. We used Henry's law and the specific dimensionless coefficient H^{cc} to calculate dissolved C₂ gases and headspace PCE and TCE.¹ The averaged values for the H^{cc} are as follows: PCE = 1.54, TCE = 2.447, Ethane = 0.0471, and Ethylene = 0.146 and Acetylene = 1.016.¹

Calculation of k_{field} and $t_{1/2-field}$

In order to estimate field rates for PCE and TCE reduction, we have calculated a k_{field} value (in yr⁻¹) following a scheme used in Wiedemeier et al.² In that study, the authors used magnetic susceptibility data to calculate the amount of magnetite in their field samples. They used a value for the magnetic susceptibility of their field sediments of 4 x 10⁻⁸ m³/kg. They then used this value to derive the amount of magnetite per kg of aquifer material based on the magnetic susceptibility of magnetite (1.117 x 10⁻³ m³/kg), the density of magnetite (5,170 kg/m³), and the bulk density of an aquifer sediment (1,700 kg/m³). Based on this calculation, estimated magnetite concentrations were ~0.1 g magnetite/kg sediment. The maximum magnetic susceptibility that they report in their paper is ~1 x 10⁻⁶ m³/kg. Based on their magnetic susceptibility data, one could expect masses of magnetite from 0.1 g to 10 g/kg.

Using this value, we calculated the in-aquifer 1^{st} order decay constant ($k_{aquifer}$) based on our rate constant for PCE and TCE degradation:

For example, the average k_{SA} for our pH ~8.0, 5 g/L magnetite, ~10 mM Fe(II) experiments is: $k_{SA} = k_{obs}/SA = 1.9 \text{ x } 10^{-8} \text{ s}^{-1}/(5 \text{ g/L} \cdot 60 \text{ m}^2/\text{g}) \cdot 3.1536 \text{ x } 10^7 \text{ s/year} = 2.0 \text{ x } 10^{-3} \text{ L m}^{-2} \text{ yr}^{-1}$

Assuming $\rho_{\text{bulk}} = 1700 \text{ kg/m}^3$, effective porosity: $\eta_e = 0.2$, that the aquifer magnetite specific surface area is consistent with that used in our study (SSA ~ 60 m²/g), and 1 g magnetite/kg sediment (m_{mag}):

$$k_{field} = \frac{m_{mag} \cdot \rho_{bulk} \cdot SSA_{mag} \cdot k_{SA}}{\eta_e} \times \frac{1m^3}{1000 L}$$

$$k_{field} = 1 \frac{\text{g magnetite}}{\text{kg sediment}} \times 1,700 \frac{\text{kg sediment}}{\text{m}^3} \times 60 \frac{m^2}{g} \times \frac{1}{0.2} \frac{m^3 \text{ sediment}}{m^3 \text{ groundwater}} \times 2.0 \times 10^{-3} \frac{L}{m^2 \cdot yr}$$

$$\times \frac{1m^3}{1000 L} = 1.0 \text{ yr}^{-1}$$

We estimate $k_{field} = 1.0 \text{ yr}^{-1}$. Which gives a half-life of $\ln(2)/1 = 0.69$ year.

[C]		Mass		Stoichiometry		0/2	0/2	% C	Duration
$(\mu M)^a$	рН	loading (g/L)	$x_{ m ms}$	x _d	XXRD	loss ^b	Products ^b	recovery ^b	(days) ^b
PCE									
~50°	7.5	5	0.50	0.55 ± 0.02	0.53	7.0	0	88	139
~50°	7.5	5	0.50	0.55 ± 0.02	0.53	7.0	0	97	139
~50°	7.5	5	0.50	0.55 ± 0.02	0.53	6.9	0	101	105
~50°	7.5	5	0.50	0.55 ± 0.02	0.53	6.87	0	96	105
~50°	7.5	5	0.50	0.55 ± 0.02	0.53	6.87	0	106	105
TCE									
48	7.0	10	0.46	0.5 ± 0.02	n.d. ^d	-10.7	0	111	91
52	7.5	5	0.50	0.55 ± 0.02	0.53	9.9	0	93	56
45	7.5	20	0.46	0.5 ± 0.02	n.d.	-6.3	0	106	140
49	8.0	10	0.45	0.5 ± 0.02	n.d.	-7.8	0	111	91
56 ^e	8.0	5	0.50	n.d. ^d	0.52	-2.3 ^e	0	102 ^e	142 ^e
PCE Co	ntrol ^e								
55	7.5	0	-	-	-	30	0	70	172
TCE Co	ntrol ^e								
55	7.5	0	-	-	-	29	0	71	135

Table S1. PCE/TCE with Magnetite alone

 a [C]₀ is the initial concentration of the analyte spiked within reactor.

^b% products, % analyte loss, and % C recovery are evaluated at the final reported time point.

 $c \sim 50$ is the nominal concentration of PCE or TCE added. Calculations in ^b are based on nominal concentrations. ^d n.d. measurement not determined.

^e Averages of triplicate reactors.

[CE]o ^a		Solids	[Fe(II)]。	Saturation	[Fe(II)]r	Stoichiom	etry	%	%	% C	Duration	kohs	ksa	kfieldh	t1/2 field
μΜ	pН	loading (g/L)	mM ^b	Index ^c	mM ^b	x_{d}^{d}	x _{xrd} ^e	loss f	products ^f	recovery f	(days)	s ⁻¹	$L m^{-2} d^{-1}$	yr ⁻¹	years
PCE															
53.7	7.9	5	32.9	0.66	29.7	0.52 ± 0.03	0.50	28	6	78	125	$6.1 imes 10^{-9}$	1.8×10^{-6}	0.33	2.1
54.0	8.0	5	0.93	-0.72	n.d. ^g	0.54 ± 0.03	0.51	18	3	85	140	2.9×10^{-9}	$8.4 imes 10^{-7}$	0.16	4.5
50.1	8.5	5	32.0	1.81	3.60	0.52 ± 0.03	0.50	40	16	76	125	$1.7 imes 10^{-8}$	$4.9 imes 10^{-6}$	0.91	0.76
55.3	8.6	5	7.58	1.30	1.61	0.52 ± 0.03	0.50	41	13	72	125	$1.3 imes 10^{-8}$	$3.7 imes 10^{-6}$	0.70	0.99
53.1	9.0	5	0.86	1.24	n.d.	0.54 ± 0.03	0.51	32	12	80	140	$1.0 imes10^{-8}$	$2.9 imes10^{-6}$	0.54	1.3
53.3	9.3	5	7.71	2.71	0.71	0.52 ± 0.03	0.50	32	10	77	125	9.6×10^{-9}	$2.8 imes10^{-6}$	0.52	1.3
45.8	9.4	5	31.4	3.64	3.86	0.52 ± 0.03	0.50	41	15	74	125	1.6×10^{-8}	$4.6 imes 10^{-6}$	0.86	0.81
TCE															
55.3	8.0	5	0.82	-0.80	n.d.	0.54 ± 0.03	0.51	28	11	83	139	9.6×10^{-9}	$2.8 imes 10^{-6}$	0.97	0.72
50.8	8.0	5	8.23	0.30	4.85	0.53 ± 0.01	0.48	24	24	99	167	$1.8 imes10^{-8}$	5.2×10^{-6}	1.3	0.52
51.6	8.0	5	8.54	0.31	4.23	0.53 ± 0.01	0.48	27	28	101	167	$2.1 imes 10^{-8}$	6.1×10^{-6}	1.1	0.62
51.1	7.9	5	9.19	0.15	4.13	0.53 ± 0.01	0.48	26	18	93	167	$1.4 imes 10^{-8}$	4.0×10^{-6}	1.2	0.59
49.7	8.0	5	9.19	0.26	5.09	0.53 ± 0.01	0.48	14	24	110	167	$1.8 imes10^{-8}$	$5.2 imes 10^{-6}$	0.80	0.86
51.1	8.0	5	9.24	0.29	4.34	0.53 ± 0.01	0.48	31	30	99	167	2.5×10^{-8}	$7.2 imes 10^{-6}$	0.86	0.81
49.7	8.0	5	9.24	0.27	5.2	0.53 ± 0.01	0.48	29	26	97	167	2.1×10^{-8}	$6.0 imes10^{-6}$	0.75	0.92
50.1	8.0	5	9.42	0.27	5.23	0.53 ± 0.01	0.48	28	30	102	167	2.2×10^{-8}	$6.3 imes10^{-6}$	0.86	0.81
49.8	8.0	5	9.49	0.28	5.48	0.53 ± 0.01	0.48	25	24	99	167	$1.5 imes 10^{-8}$	$4.3 imes 10^{-6}$	2.8	0.25
49.3	8.0	5	9.50	0.28	5.36	0.53 ± 0.01	0.48	22	24	102	167	$1.6 imes 10^{-8}$	$4.6 imes 10^{-6}$	0.97	0.72
50.5	8.0	5	9.52	0.28	4.98	0.53 ± 0.01	0.48	25	19	94	167	1.4×10^{-8}	$4.0 imes10^{-6}$	0.070	9.9
51.1	8.0	5	9.52	0.29	4.18	0.53 ± 0.01	0.48	24	20	97	167	$1.6 imes 10^{-8}$	$4.6 imes 10^{-6}$	0.31	2.3
54	8.0	5	10.0	0.30	n.d.	0.48 ± 0.03	0.56	75	46	71	168	5.2×10^{-8}	$1.5 imes10^{-5}$	0.091	7.6
51.2	8.0	5	10.69	0.41	4.57	0.53 ± 0.01	0.48	27	26	99	167	1.8×10^{-8}	5.2×10^{-6}	0.49	1.4
61.2	8.0	5	11.2	0.35	n.d.	0.48 ± 0.03	0.56	10	5	94	287	1.3×10^{-9}	$3.7 imes 10^{-7}$	0.11	6.2
49.5	7.9	5	31.2	0.64	19.56	0.48 ± 0.03	0.45	-0.8	3	103	69	5.7×10^{-9}	1.6×10^{-6}	0.19	3.7
69.3	8.4	5	13.1	1.22	n.d.	0.48 ± 0.03	0.56	22	5	83	287	1.7×10^{-9}	$4.9 imes 10^{-7}$	0.14	5.0
53.9	8.5	5	0.67	0.13	n.d.	0.54 ± 0.03	0.51	25	11	85	139	9.1×10^{-9}	$2.6 imes 10^{-6}$	0.21	3.2
51.1	8.5	5	7.55	1.18	4.18	0.48 ± 0.03	0.45	5	2	97	125	2.1×10^{-9}	$6.0 imes 10^{-7}$	0.97	0.72
51.5	8.6	5	32.9	1.94	3.50	0.48 ± 0.03	0.45	4.5	4	99	125	3.5×10^{-9}	$1.0 imes10^{-6}$	1.3	0.52
54.2	9.0	5	7.83	2.24	0.58	0.48 ± 0.03	0.45	13	3	90	125	2.6×10^{-9}	$7.5 imes10^{-7}$	1.1	0.62
52.2	9.1	5	30.9	3.07	1.87	0.48 ± 0.03	0.45	11	4	93	125	$4.0 imes 10^{-9}$	$1.2 imes 10^{-6}$	1.2	0.59

TABLE S2. PCE/TCE Magnetite + aqueous Fe(II) reactors with products.

^a [**CE**]₀ = Initial chloroethylene concentration

^b $[Fe(II)]_{0,f}$ = initial or final Fe(II) concentration, respectively

^c Saturation index = log(IAP/K_{sp}). The ion activity product (IAP) was determined with initial Fe(II) concentration and pH for each experiment. $K_{sp} = [Fe^{2+}] [OH^{-}]^2 = 5 \times 10^{-15.3}$

^d x_d = Magnetite Fe(II)/Fe(III) ratio from dissolution

 $e_{x_{xrd}}$ = Magnetite Fe(II)/Fe(III) ratio from x-ray diffraction.

^f % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.

^g (**n.d.**) indicates not determined.

 $h_{kaquifer}$ calculated with the assumptions: sediment magnetite content = 1 g/kg, $\rho_{bulk} = 1700$ kg/m³, effective porosity: $\eta_e = 0.2$, that the aquifer magnetite specific surface area is 60 m²/g.

[C]₀ ^a (µM)	pН	Mass loading	[Fe(II)] _o b (mM)	Saturation Index ^c	Stoichiometry		% loss ^f	% products ^f	% C recoverv ^f	Duration (day)
` • <i>´</i>		(g/L)			xd ^d	<i>x</i> _{xrd} ^e		1	v	
PCE										
51.7	7.5	5	0.88	-1.7	0.54 ± 0.03	0.51	26	0	74	140
~50	7.5	5	2.7	-1.3	0.55 ± 0.02	0.53	10	0	90	78
~50	7.5	5	4.6	-1.0	0.39 ± 0.03	0.54	2.8	0	97	78
65	7.5	17	10.0	-0.70	0.50 ± 0.06	n.d. ^g	-24.5	0	125	91
~70	7.5	17	25.0	-0.30	0.50 ± 0.06	n.d.	-14.5	0	115	91
48.9	8.0	5	7.47	0.21	0.52 ± 0.03	0.5	6.4	0	96	125
TCE										
22 ^h	6.1	147	201 ^h	-2.0	0.43	n.d.	3.8	0	96	104
51	7.5	20	10.0	-0.70	0.50 ± 0.06	n.d.	4.0	0	96	128
50.5	7.5	20	25.0	-0.30	0.50 ± 0.06	n.d.	-2.0	0	102	128
55.2	8.1	5	8.11	0.45	0.48 ± 0.03	0.45	6	0	94	195
55.9	7.5	5	0.92	-1.7	0.54 ± 0.03	0.51	26	0	74	139

TABLE S3. PCE/TCE with Magnetite + aqueous Fe(II) reactors without products.

* The magnetite Fe₃O₄ mineral used in the reactor was freshly precipitated and not freeze dried.

^a [C]₀ = Initial chloroethylene concentration

^b [Fe(II)]₀,= initial Fe(II) concentration, respectively

^c Saturation index = log(IAP/K_{sp}). The ion activity product (**IAP**) was determined with initial Fe(II) concentration and pH for each experiment. $K_{sp} = [Fe^{2+}] [OH^{-}]^2 = 5 \times 10^{-15}$.³

^d x_d = Magnetite Fe(II)/Fe(III) ratio from dissolution

^e x_{xrd} = Magnetite Fe(II)/Fe(III) ratio from x-ray diffraction.

^f % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.

^g (**n.d.**) indicates not determined.

^h 22 g of a mixture of freeze dried magnetite with the stoichiometry determined by a weighted average.

Figure S1. Photographs of reactors containing 5 g/L magnetite reacted with low Fe(II) (~1 mM, left) and high Fe(II) (~10 mM, right). The solids on the right contain white Fe(OH)₂(s). Conditions: 10 mM MOPs buffer at pH 8.0, and 50 μ M TCE.

Figure S2. X-ray diffraction pattern of a TCE reactor with magnetite and Fe(II) where 30.0% products were observed after 167 days. Blue bars indicate ferrous hydroxide and black bars indicate magnetite. The background at $2\theta < 60^{\circ}$ is from the Kapton film used to seal the sample from air. Experimental conditions: 51μ M TCE, 10 mM MOPs/NaCl, 9.2 mM Fe(II), pH 8.0.

Figure S3. TCE reduction (or lack thereof) as reported in the Sivavec patent⁴ and our attempt to reproduce the data under similar conditions. **Sivavec:**⁴ 7.0 μ M TCE, 217 g/L Fe₃O₄ (s), 200 mM Fe(II), pH 6.0. **This study:** 22 μ M TCE, 147 g/L Fe₃O₄ (s), 201 ± 12 mM Fe(II), 10 mM MOPs/NaCl, pH 6.1

[C]₀ ^a (μM)	рН	[Fe(II)] ₀ ^b (mM)	Saturation Index ^c	[Fe(II)] _f ^b (mM)	% loss ^d	% products ^d	% C recovery d	Duration (day)
PCE								
58.2	7.0	0.3	-3.0	0.16	20	0	80	138
55.2	7.0	1.03	-2.7	1.08	29.6	0	82	134
53.3	7.0	7.79	-1.8	7.52	19.1	0	81	117
50.2	7.0	27.41	-1.3	n.d. ^e	16	0	84	140
56.1	7.5	1.03	-1.6	1.06	20.4	0	70.4	134
51.2	7.5	7.52	-0.78	7.17	17.7	0	82	117
49.2	7.5	13.52	-0.52	n.d.	13	0	87	140
50.3	7.5	27.32	-0.28	n.d.	14	0	78	140
56.3	7.6	0.21	-2.3	0.21	26.1	0	74	138
57.2	8.0	1.03	-0.62	1.04	16.4	0	80	134
57	8.1	0.2	-1.2	0.18	21.9	0	78	138
53.6	8.5	1.01	0.35	1.02	16.4	0	84	134
59.1	8.6	0.23	-0.22	0.2	8.5	0	92	138
51.4	8.6	7.67	1.3	1.56	15.9	0	84	117
57	9.1	0.28	0.93	0.14	19	0	81	138
52.7	9.1	1.07	1.4	0.37	15.6	0	85	134
55.7	9.2	7.58	2.5	1.15	25.2	0	75	117
TCE								
49.4	7.0	6.71	-1.9	8.08	1	0	99	117
54.1	7.0	26.54	-1.3	n.d.	21	0	79	140
51.9	7.1	0.34	-3.0	0.33	1	0	99	138
53.3	7.1	1.06	-2.5	1.02	4.1	0	96	134
53.5	7.5	1.04	-1.6	1.08	4.1	0	96	134
52.6	7.5	13.13	-0.59	n.d.	14	0	86	140
56.9	7.5	28.16	-0.25	n.d.	16	0	84	140
53	7.6	0.23	-2.2	0.2	2.4	0	98	138
51.1	7.6	7.59	-0.70	7.64	1	0	99	117
51.7	8.0	1.01	-0.71	1.06	2.2	0	98	134
66.3	8.0	9.84	0.29	n.d.	23.5	0	77	75
152.9	8.0	9.9	0.30	n.d.	-36.6	0	33.2	75
~50 f	8.0	10.27	0.31	n.d.	2.3	0	98	75
~50 f	8.0	11.54	0.36	n.d.	3.1	0	97	75
79.9	8.0	11.64	0.37	n.d.	35	0	65	75
~50 ^f	8.0	11.79	0.37	n.d.	6.3	0	94	75
52.5	8.1	0.2	-1.2	0.24	11.1	0	89	138
53.5	8.1	7.71	0.21	6.27	5.5	0	95	117
53.8	8.5	0.16	-0.43	0.25	4.5	0	96	138
52.7	8.5	1.03	0.35	1	2.7	0	97	134
52.8	8.5	7.48	1.2	1.99	6.5	0	94	117
52.1	9.0	0.21	0.55	0.16	1.1	0	99	138
53.9	9.1	1.04	1.4	0.46	6.3	0	94	134
52	9.1	7.23	2.3	0.88	2.7	0	97	117

Table S4. PCE/TCE with aqueous Fe(II) alone and no products

^a [**C**]₀ = Initial chloroethylene concentration

^b [Fe(II)]_{0,f} = initial or final Fe(II) concentration, respectively

^c Saturation index = $log(IAP/K_{sp})$. The ion activity product (IAP) was determined with initial Fe(II) concentration and pH for each experiment. $K_{sp} = [Fe^{2+}] [OH^{-}]^2 = 5 \times 10^{-15.3}$ ^d % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.

^e(**n.d.**) indicates not determined.

^fFirst time point determined was not at time zero, and thus the [C]₀ is reported as a nominal concentration.

[C]₀ ^a (µM)	рН	[Fe(II)] ₀ ^b (mM)	Saturation Index ^c	[Fe(II)] _f ^b (mM)	% loss ^d	% products ^d	% C recovery ^d	Duration (day)	<i>k</i> _{obs} (s ⁻¹)
PCE									
50.2	8.0	31.7	0.80	1.99	27.6	2.7	75	193	$1.7 imes 10^{-9}$
54.0	8.1	36.80	1.1	33.99	23.3	1.1	77	156	$8.5 imes 10^{-10}$
52.7	8.5	~13.34	1.4	n.d. ^e	14	1.0	86	140	$1.3 imes 10^{-8}$
54.0	8.6	28.52	1.9	1.39	39.0	0.3	61	188	$1.8 imes 10^{-10}$
51.2	9.0	~13.34	2.4	n.d.	19	1.0	74	140	$1.8 imes10^{-8}$
44.4	9.0	28.00	2.7	0.63	11.9	2.0	90	188	$4.8 imes 10^{-10}$
TCE									
196.9	8.0	31.62	0.80	9.39	-21.5	3.8	125	193	$2.3 imes 10^{-9}$
58.9	8.0	31.98	0.81	15.19	26.6	9	82	193	$5.6 imes 10^{-9}$
52.6	8.1	35.66	0.95	33.9	7	8	100.6	156	$2.5 imes 10^{-9}$
50.2	8.5	28.26	1.8	1.73	5	7.2	102	193	$4.3 imes 10^{-9}$
50.9	8.5	29.21	1.8	1.57	-7.9	1.2	109	193	$6.6 imes 10^{-10}$
56.2	8.5	~13.34	1.4	n.d.	29	6	75	140	$3.0 imes 10^{-9}$
51	8.9	28.55	2.6	0.46	7.4	9	102	193	$5.7 imes 10^{-9}$
55.6	9.0	~13.34	2.4	n.d.	24	7	83	140	$5.7 imes 10^{-9}$
51.5	9.2	28.08	3.1	0.33	23.3	13	90	193	$7.7 imes 10^{-9}$

Table S5. PCE/TCE with aqueous Fe(II) alone, with products

^a [C]₀ = Initial chloroethylene concentration

^b [Fe(II)]₀= initial Fe(II) concentration

^c Saturation index = log(IAP/K_{sp}). The ion activity product (**IAP**) was determined with initial Fe(II) concentration and pH for each experiment. $K_{sp} = [Fe^{2+}] [OH^{-}]^2 = 5 \times 10^{-15}$.³

^d % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point. Negative loss numbers indicate higher measured TCE concentrations at the final time point that the initial time point.

^e n.d. = not determined.

Figure S4. X-ray diffraction pattern of a TCE reactor with Fe(II) alone after 193 days where 9.0% products were observed. Light green bars indicate ferrous hydroxide. The background before 60° 2 θ is due to Kapton film used to seal the sample from air. Experimental conditions: 60 μ M TCE, 10 mM MOPs/NaCl, 32 mM Fe(II), pH 8.0.

Figure S5. Mössbauer spectrum of the white precipitate in Fe(II) alone reactors after reacting with 60 μ M TCE, 10 mM MOPs/NaCl, pH 8.0 for 193 days where 9.0% products were observed. Note: 32 mM Fe(II) was the initial concentration of dissolved iron added.

References

1. Sander, R., Compilation of Henry's law constants (version 4.0) for water as solvent. *Atmospheric Chemistry and Physics* **2015**, *15*, (8), 4399-4981.

2. Wiedemeier, T. H.; Wilson, B. H.; Ferrey, M. L.; Wilson, J. T., Efficacy of an In-Well Sonde to Determine Magnetic Susceptibility of Aquifer Sediment. *Groundwater Monitoring & Remediation* **2017**, *37*, (2), 25-34.

3. Sawyer, C. N.; McCarty, P. L.; Parkin, G. F., Chemistry for environmental engineering and science. In 5th ed.; Mcgraw-Hill: New York, 2003.

4. Sivavec, T. M. Composition and method for ground water remediation. U.S. Patent 5,750,036, May 12, 1998.