Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2018

1 SUPPORTING INFORMATION

2

3 URBAN SOURCES OF SYNTHETIC MUSK COMPOUNDS TO THE ENVIRONMENT

4

5 Fiona Wong¹, Matthew Robson^{2,3§}, Lisa Melymuk⁴, Chubashini Shunthirasingham¹, Nick
6 Alexandrou¹, Mahiba Shoeib¹, Edmund Luk¹, Paul Helm³, Miriam L. Diamond^{2, 5§, 6§}, Hayley
7 Hung^{1*}

8

9 ¹ Air Quality Process Research Section, Environment and Climate Change Canada, Toronto,

10 Ontario, M3H 5T4, Canada

11 ² Department of Geography, University of Toronto, Toronto, Ontario, M5S 3G3, Canada

12 ³ Ontario Ministry of Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6, Canada

13 ⁴ Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science,

14 Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic

15 ⁵ Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada

16 ⁶ Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto,

17 Ontario, M5S 3E5, Canada

18 §current affiliation

19 *corresponding author

20 Table of contents

Content Text S1	Sampling, analytical approach, and instrumental analysis	Page S2
Table S1	Description of synthetic musk compounds	S6
Table S2	Multiple Reaction Monitoring (MRM) transitions in electron ionization mode (EI) and instrument detection limits (IDLs) for synthetic musk compounds analyzed by GC/MS/MS by Environment and Climate Change Canada (ECCC)	S12
Table S3	Recoveries (%) of native synthetic musk compounds (SMCs) extracted by Environment and Climate Change Canada (ECCC)	S13
Table S4	Instrumental detection limit (ng/m ³) for synthetic musk compounds (SMCs)	S14
Table S5	Synthetic musk compounds (SMCs) in mean blanks \pm standard deviations for air (ng/m ³) and water (ng/L).	S15
Table S6	Concentrations (ng/m ³) of synthetic musk compounds (SMCs) in indoor air from (a) homes, (b) offices and "other"	S16
Table S7	Concentrations (ng/m3) of synthetic musk compound (SMCs) in outdoor air along the (a) East (b) West and (c) North transect	S17
Table S8	Table S8 Total air concentration (ng/m ³ , gas and particle phase) of synthetic musk compounds (SMCs) in the urban site, downtown Toronto	S19
Table S9	Concentrations of synthetic musk compounds (SMCs) in air from WWTPs (ng/m ³)	S20
Table S10	Concentrations of HHCB and AHTN in rural air from the Great Lakes Basin	S21
Table S11	Literature data of synthetic musk compounds (SMCs) in air	S22
Table S12	Median and range concentration of SMCs in surface waters (ng/L) in urban and rural sites	S23
Table S13	Median and range concentrations (ng/L) of SMCs in WWTP effluents	S24
Figure S1	Source-Receptor Framework	S25
Figure S2	Composition of SMCs in air (data expressed as percent of total concentration)	S26
Figure S3	Air concentrations of sum of 11 synthetic musk compounds (SMCs) at wastewater treatment plants (WWTPs), a) on-site and b) off-site during summer and winter period.	S27
Figure S4	Seasonal variation of synthetic musk compounds (SMCs) in surface water of tributaries	S28

References

22 Text S1 Sampling, analytical approach, and instrumental analysis

(i) Indoor air from homes and offices Indoor polyurethane foam (PUF) disk-type passive samplers (PUF-PASs) were deployed mostly in homes, offices and others (n = 20). Samplers were deployed at the edge of the room at an approximate height of 1.5 m, away from any obvious sources of contamination. Samplers were deployed for 30 days between August and September 2006. Approximately 25 m³ of air were collected for each sample, assuming a sampling rate of 0.7 m³/day. Further details about each sampling site and method are published in Zhang et al¹.

(ii) Outdoor air along three urban-rural transects PUF-PASs were deployed along three 30 transects (east, west, and north) across the Greater Toronto Area (GTA) with a total of 19 sites. 31 32 PUF-PASs were deployed over four seasonal periods from 2007 to 2008. The deployment 33 periods were: Autumn - October 2007 to January 2008; Winter - January 2008 to April 2008; Spring - April 2008 to July 2008; Summer - July 2008 to October 2008. Samplers were hung 34 35 from isolated tree branches at a height of approximately 2 meters, mostly in small areas of park land. Each sample represented $\sim 250 \text{ m}^3$ of air, assuming a sampling rate of 2.69 m³/day. The 36 sampling rate was determined based on a 125-day calibration study specifically designed for 37 synthetic musk compounds (SMCs)². Details about each passive sampling site are reported in 38 39 Melymuk et al.³.

40 (iii) Outdoor air from an urban site, city of Toronto Active air samples (n = 32) were 41 collected on the roof of a 3-storey building located at downtown Toronto. Each sample consisted 42 of one glass fiber filter (GFF) and two PUF plugs. Sampling was carried out every 12 days from 43 October 2007 to October 2008 and each sample represented ~ 450 m³ of air. Details of the 44 sampling method are given in Melymuk et al. ⁴.

45 (iv) Outdoor air from WWTP. Archived air samples (n = 32) collected from 8 wastewater 46 treatment plants (WWTPs) in Ontario were analyzed. Air samples were collected during the 47 summer of 2013 and winter of 2014. Sampling was achieved by sorbent impregnated PUF-disk 48 passive samplers (SIP-PASs). The SIP-PASs were deployed "on-site" (i.e. above the aeration 49 tank or adjacent to the lagoon) and "off-site" (i.e. ~100-150 m away from the active area on the 50 premises of the WWTP). Details of the sampling site and method are presented in Shoeib et al.,⁵. 51 On average each sample represented ~ 280 m³ of air, assuming sampling rate of 4 m³/day

52 (v) Outdoor air from a rural site at Lake Ontario Archived air samples (n = 33) from Point 53 Petre (PPT), a regionally-representative station located on the shore of Lake Ontario ($43^{\circ} 50' 34''$ 54 N, 77° 09' 13'' W) were analysed. The samples were collected in 2010 using high-volume active 55 samplers that were equipped with one GFF and two polyurethane foams (PUFs). The sampling 56 volume for each sample was approximately 340 m³. Samples were collected every 12 days over 57 one-year period. Details of the sampling method are reported previously⁶.

58 (vi) Outdoor air from a remote site at Arctic Archived air samples (n = 21) from Alert, a 59 Canadian High Arctic station (Nunavut, 82° 30'N, 62° 20' W) were obtained. Samples were 60 collected from 2009 to 2010. Sampling was achieved by high-volume active samplers equipped 61 with one GFF, and PUF/XAD/PUF sandwich. Each represented ~2000 m³ of air. Description of 62 sample collection is presented in Wong et al⁷

62 sample collection is presented in Wong et al^7 .

63 Storage, extraction and cleanup of the air samples

After the air samples were collected, the sorbent was transferred immediately to a glass jar, sealed with Teflon tape, and stored in a cooler for transportation. The samples were stored in a freezer at -10°C until chemical analysis.

The chemical analysis of air samples from (i) indoor; (ii) urban-rural transects, and (iii) urban site was performed by University of Toronto (UT). Details of the extraction and cleanup methods have been previously reported ². In brief, PUF-PAS and PUF plugs were extracted by a Dionex ASE350 (Accelerated Solvent Extraction System) with dichloromethane (DCM). Filters were Soxhlet-extracted for 18 h with DCM. All samples were spiked with 50 ng of d_{10} fluoranthene (Wellington Laboratories, Guelph, Canada) as internal standard prior to extraction. Samples were reduced in volume to 10 mL and solvent exchanged into hexane via rotary evaporation. The samples were split into two fractions: 70% for PCB/PBDE analysis and 30% for SMC analysis. The SMC fraction was then eluted through a 1-g silica SPE cartridge (Varian, Canada) with 25 ml of 50:50 DCM/Hexane. The sample was further reduced in volume to 100 µl using a Zymark TurboVap followed by nitrogen blow-down. Nonane was used as keeper. The samples were spiked with 100 ng of deuterated *p*-terphenyl as injection standard.

The air samples from the (iv) WWTP, (v) rural and (vi) remote site were analysed by ECCC and they all underwent similar analytical procedures. The WWTP air samples (iv) were extracted by a Dionex ASE350 using petroleum ether/acetone (83/17, v/v). Prior to extraction, known amount of mass-labelled volatile methyl-siloxanes (VMS) and per and poly-perfluoroalkyl substances (PFASs) were added to all the samples. The extracts were concentrated by rotary evaporation followed by gentle nitrogen blow-down to 500 µl using iso-octane as keeper. The extracts did not undergo cleanup procedure. The samples were spiked with 100 ng of mirex as both injection and internal standard ⁵.

The rural air samples (v) were extracted by Soxhlet apparatus with hexane, dried with anhydrous sodium sulfate, and cleanup using florisil column. Samples were concentrated to 1 mL and isooctane was used as keeper. 100 ng of mirex was added as injection and internal standard ⁶. No mass-labelled compounds were added prior to extraction.

91 The remote air samples from the Canadian Arctic (vi) were extracted by Dionex ASE350 with 92 hexane. The extracts were concentrated using rotary evaporation followed by gentle nitrogen, 93 and blow-down to 500 μ l using isooctane as keeper. The extracts did not undergo cleanup 94 procedure. Prior to injection, 100 ng of mirex was added as injection and internal standard .

95

96 Instrumental analysis for SMCs

Table S1 presents the chemical name, musk type, CAS no., structure, supplier, % purity of standard used, solubility and half-life in air due to hydroxyl radical (OH) reaction of each target SMC. The indoor air, urban-rural transect air, urban air, surface water and WWTP effluents were analysed by UT. Six SMCs were analyzed in these samples, namely cashmeran (DPMI), galaxolide (HHCB), tonalide (AHTN), phanolide (AHMI), celestolide (ADBI), traseolide (ATII). These are all polycyclic musks (PCMs). Analysis was achieved by gas 103 chromatography-mass spectrometry analysis (GC/MS), using an Agilent 6890N gas 104 chromatograph coupled to an Agilent 5975 Inert Mass Selective Detector (MSD). SMC analysis 105 was performed using a 60 m DB-5 column (0.25 mm I.D. x 0.25µm film thickness) running an 106 oven temperature of 80°C for 1 min, 80°C to 130°C at 30°C/min, 130°C to 240°C at 3°C/min, 107 240°C to 300°C at 10°C/min and then 300°C for 15 min. The injector temperature was held at 108 280°C and the interface at 300 °C. The MS was operated in electron impact (EI) ionization single 109 ion monitoring (SIM) mode, with the two most abundant ions for each analyte being monitored. 110 Each SMC was identified on the basis of its retention time and ratio of its two most abundant 111 ions. The monitored ions were: DPMI (191/206), ADBI (229/244), AHMI (229/244), ATII 112 (215/258), HHCB (243/213), AHTN (243/258), d₁₀-fluoranthene (212/208), *p*-terphenyl 113 (244/212). SMCs were quantified against the internal standard (d₁₀-fluoranthene) which was 114 added prior to extraction. The injection standard (i.e. deuterated *p*-terphenyl) was used to 115 quantify the recovery of the internal standard.

116 The archived air samples from WWTPs, rural site, and remote Arctic site were analyzed by ECCC. A total of 21 musks, including the 6 musk compounds analyzed by UT were 117 118 measured (Table 1). Samples were analyzed using an Agilent 7000C triple quadrupole MS connected to a 7890B GC, operated in multiple reaction mode (MRM) under electron ionization 119 (EI) condition. The monitoring transitions for each target chemical are presented in Table S2. 120 GC injection was performed in splitless mode at 270°C. GC separation was accomplished using 121 122 a 30 m DB5-ms (Agilent Technologies, Mississauga, Ontario) with helium at 1 mL/min constant flow as carrier gas. The oven temperature program was as follows: initial oven temperature was 123 124 80°C then raised to 160°C at 5°C/min and held for 8 min, raised to 230°C at 4°C/min, and raised to 300°C at 20°C/min. Each musk compound was identified on the basis of its retention time and 125 ratio of its two most abundant MRM transitions. SMCs were quantified against the internal 126 standard, i.e., mirex, which was added prior to instrumental analysis. 127

Туре	CAS no.	Common name (Abbrev.)	IUPAC Name	Supplier	% Purity	Structure	S (<i>mg/L</i>)	<i>t</i> _{1/2} , _{AIR} (day) ^b
N	145-39-1	Musk Tibetene (MT)	1-tert-butyl-3,4,5-trimethyl- 2,6-dinitrobenzene	Sigma Aldrich	na		0.020 ^a 0.29 ^b	7.3
N	83-66-9	Musk Ambrette (MA)	1-tert-butyl-2-methoxy-4- methyl-3,5-dinitrobenzene	Sigma Aldrich	na		0.85 ^a 2.1 ^b	7.1
N	116-66-5	Musk Moskene (MM)	1,1,3,3,5-pentamethyl-4,6- dinitro-2H-indene	Sigma Aldrich	98		0.012 ^a 0.17 ^b	6.1

Table S1 Description of synthetic musk compounds. Na = not available; N = nitro-musk; PC = polycyclic musks; MC = macrocyclic musks. S = solubility; $t_{1/2, AIR}$ = degradation half-life in air.

Туре	CAS no.	Common	IUPAC Name	Supplier	%	Structure	S	$t_{1/2}, AIR$
		name			Purity		(<i>mg/L</i>)	(day) ^b
		(Abbrev.)						
N	81-14-1	Musk Ketone (MK)	1-(4-tert-butyl-2,6- dimethyl-3,5- dinitrophenyl)ethanone	Sigma Aldrich	98	O ₂ N NO ₂	1.9° 0.56ª 1.2 ^b	8.3
N	81-15-2	Musk Xylene (MX)	1-tert-butyl-3,5-dimethyl- 2,4,6-trinitrobenzene	Sigma Aldrich	98	O ₂ N NO ₂ NO ₂	0.49 ^c 0.25 ^a 0.82 ^b	13
PC	7779-30-8	1-Methyl- Alpha-Ionone	1-(2,6,6-trimethyl-2- cyclohexen-1-yl)-1-penten- 3-one	Sigma Aldrich	na		3.3 b	0.9

Туре	CAS no.	Common name (Abbrev.)	IUPAC Name	Supplier	% Purity	Structure	S (<i>mg/L</i>)	t _{1/2} , AIR (day) ^b
PC	33704-61-9	Cashmeran (DPMI)	1,1,2,3,3-pentamethyl- 2,5,6,7-tetrahydroinden-4- one	TRC	96		0.21 ^a 5.9 ^b	0.1
PC	54464-57-2	Iso E super (OTNE)	1-(2,3,8,8-tetramethyl- 1,3,4,5,6,7- hexahydronaphthalen-2- yl)ethanone	TRC	95	° × ×	1.07 ^b	0.083 0.058 ^d
PC	13171-00-1	Celestolide (ADBI)	1-(6-tert-butyl-1,1- dimethyl-2,3-dihydroinden- 4-yl)ethanone	TRC	98		0.018 ^a 0.22 ^b	1.4
PC	15323-35-0	Phantolide (AHMI)	1-(1,1,2,3,3,6-hexamethyl- 2H-inden-5-yl)ethanone	TRC	96		0.030ª 0.25 ^b	0.7

Туре	CAS no.	Common name (Abbrev.)	IUPAC Name	Supplier	% Purity	Structure	S (<i>mg/L</i>)	<i>t</i> _{1/2} , AIR (day) ^b
PC	68140-48-7	Traseolide (ATII)	1-(1,1,2,6-tetramethyl-3- propan-2-yl-2,3- dihydroinden-5-yl)ethanone	TRC	97		0.090 ^a 0.087 ^b	0.6
PC	1222-05-5	Galaxolide (HHCB)	4,6,6,7,8,8-hexamethyl- 1,3,4,6,7,8- hexahydrocyclopenta[g]isoc hromene	TRC	95		0.19 ^a 0.19 ^b	0.22 ^d
PC	21145-77-7	Tonalide (AHTN)	1-(3,5,5,6,8,8-hexamethyl- 6,7-dihydronaphthalen-2- yl)ethanone	TRC	98	o	0.0073 ^a 0.29 ^b	0.6
MC	502-72-7	Exaltone	Cyclopentadecanone	Sigma Aldrich	98		0.59 ^b	0.43

Туре	CAS no.	Common	IUPAC Name	Supplier	%	Structure	S	$t_{1/2}, AIR$
		name (Abbrev.)			Purity		(<i>mg/L</i>)	(day) ^b
MC	541-91-3	Muscone	3-methylcyclopentadecan-1- one	TRC	98		0.22 ^b	0.36
MC	106-02-5	Exaltolide	Oxacyclohexadecan-2-one	Sigma Aldrich	98		0.15 ^b	0.56
MC	7779-50-2	Ambrettolide	1-oxacycloheptadec-7-en-2- one	Sigma Aldrich	98		0.59 ^b	0.15
MC	109-29-5	16- Hexadecanoli de	Oxacycloheptadecan-2-one	Sigma Aldrich	97		0.047 ^b	0.52

Туре	CAS no.	Common	IUPAC Name	Supplier	%	Structure	S	$t_{1/2}, AIR$
		name (Abbrev.)			Purity		(<i>mg/L</i>)	(day) ^b
MC	54982-83-1	Musk MC-4	1,4-dioxacyclohexadecane- 5,16-dione,	Sigma Aldrich	na		5.4 ^b	0.68
MC	6707-60-4	Cervolide	1,6-dioxacycloheptadecan- 7-one	Sigma Aldrich	na		1.4 ^b	0.30
MC	105-95-3	Ethylene brassylate, or Musk T	1,4-dioxacycloheptadecane- 5,17-dione	Sigma Aldrich	97		1.7 ^b	0.63

130 ^aPaasivirta et al., 2002.⁸

131 ^bUS EPA., 2018. ⁹ EPI SuiteTM version 4.11. Specific methods used: i) solubility - WSKOW v1.42, based on EPI Suite estimated

132 $\log K_{OW}$; ii) HLC - HENRYWIN v3.20 based on bond method; iii) $\log K_{OW}$ - KOWWIN v1.68; iv) Sub-cooled liquid VP -

133 MPBPWIN v1.43, based on mod-grain method; v) $Log K_{OA}$ - KOAWIN v1.10

134 °Tas et al., 1997. ¹⁰

135 ^dAschmann et al. $(2001)^{11}$

137 Table S2 Multiple Reaction Monitoring (MRM) transitions in electron ionization mode (EI) and

138	instrument detection	limits (IDLs)	for synthetic	musk compounds	analyzed by	GC/MS/MS by
-----	----------------------	---------------	---------------	----------------	-------------	-------------

Compound	Quantifying	g MRM	Qualifyin	g MRM
Musk Tibetene (MT)	266.1 →	251	251.1 →	91
Musk Ambrette (MA)	268.1 →	253	253.1 →	91.1
Musk Moskene (MM)	263.1 →	128	278.1 →	263
Musk Ketone (MK)	279.1 →	91	294.1 →	279.1
Musk Xylene (MX)	282.1 →	91	297.1 →	282.1
1-Methyl-Alpha-Ionone	206.2 →	191.1	191.1 >	161.2
Cashmeran (DPMI)	206.2 →	191.1	191.0 →	91
Iso E super (OTNE)	191.0 →	121	119.0 →	91
Celestolide (ADBI)	229.2 →	173.1	244.2 →	229.2
Phantolide (AHMI)	244.2 →	229.1	229.2 →	171.2
Traseolide (ATII)	215.1 →	173.1	258.2 →	215.1
Galaxolide (HHCB)	243.2 →	213.1	258.2 →	243.2
Tonalide (AHTN)	258.2 →	243.2	243.1 →	159
Exaltone	224.2 →	98.1	166.1 →	81
Muskone	238.2 →	112.1	209.2 →	95.1
Exaltolide	180.2 →	95.1	222.2 →	111.2
Ambrettolide	252.2 →	123.1	234.2 →	93
16-Hexadecanolide	254.2 →	99.1	236.2 →	95
Musk MC-4	213.1 →	149.1	173.1 →	111.1
Cervolide	182.1 →	122	181.0 →	135
Ethylene brassylate	187.1 →	125.1	227.2 →	163.1

139 Environment and Climate Change Canada (ECCC).

141 Table S3 Recoveries (%) of native synthetic musk compounds (SMCs) extracted by Environment

142	and Climate Change Canada (ECCC) and University of Toronto (UT).	
-----	--	--

	ECCC	ECCC	UT	UT
Compound	PUF/XAD/PUF	Filter	PUF and Filter	Water
-	(n = 3)	(n = 3)	(n = 3)	(n = 4)
Musk Tibetene (MT)	85±1.7%	70±5.8%		
Musk Ambrette (MA)	85±0.4%	78±5.2%		
Musk Moskene (MM)	82±2.5%	76±8.0%		
Musk Ketone (MK)	117±8.4%	75±15%		
Musk Xylene (MX)	90±6.3%	78±10%		
1-Methyl-Alpha-				
Ionone	130±18%	79±13%		
Cashmeran (DPMI)	113±6.9%	76±9%		
Iso E super (OTNE)	137±14%	73±18%		
Celestolide (ADBI)	119±6.0%	76±12%	$99 \pm 1\%$	$109 \pm 6\%$
Phantolide (AHMI)	99±4.2%	66±9%	$96 \pm 8\%$	$109 \pm 6\%$
Traseolide (ATII)	113±7.2%	70±12%	$110 \pm 12\%$	$119 \pm 9\%$
Galaxolide (HHCB)	102±1.2%	77±6.6%	$102 \pm 4\%$	$103\pm46\%$
Tonalide (AHTN)	109±3.6%	70±11%	$90 \pm 12\%$	$113 \pm 12\%$
Exaltone	105±17%	73±8.7%		
Muskone	121±3.8%	77±7.4%		
Exaltolide	137±1.5%	93±21%		
Ambrettolide	110±8.0%	84±8.7%		
16-Hexadecanolide	96±4.2%	71±7.6%		
Musk MC-4	121±4.2%	77±7.4%		
Cervolide	126±0.59%	91±4.1%		
Ethylene brassylate	153±3.7%	86±17%		

144 Table S4 Instrumental detection limit (ng/m³) for synthetic musk compounds (SMCs). "-" = not

145 analyzed. Assumed volume for Indoor air = 25 m^3 ; U-R transect air = 250 m^3 ; Urban air = 450

146 m³; WWTP air = 280 m³; Rural air = 340 m³; Arctic air = 2000 m³, tributary surface water = 18

147 L; WWTP effluent = 2 L; soils = 25 g dry weight, 10% moisture.

Compound	Indoor air	U-R air	Urban air	WWTP	Rural air	Remote
*		transect		air		air
	ng/m ³					
Musk Tibetene (MT)	-	-	-	6.4E-04	5.3E-04	9.0E-05
Musk Ambrette (MA)	-	-	-	4.6E-04	3.8E-04	6.5E-05
Musk Moskene (MM)	-	-	-	1.9E-03	1.5E-03	2.6E-04
Musk Ketone (MK)	-	-	-	1.7E-03	1.4E-03	2.4E-04
Musk Xylene (MX)	-	-	-	2.8E-03	2.3E-03	3.9E-04
1-Methyl-Alpha-Ionone	-	-	-	3.6E-03	3.0E-03	5.1E-04
Cashmeran (DPMI)	0.0066	0.66	3.7E-04	1.1E-03	8.8E-04	1.5E-04
Iso E super (OTNE)	-	-	-	1.2E-03	9.7E-04	1.7E-04
Celestolide (ADBI)	0.0033	0.33	1.8E-04	7.1E-05	5.9E-05	1.0E-05
Phantolide (AHMI)	0.0031	0.31	1.7E-04	1.1E-04	8.8E-05	1.5E-05
Traseolide (ATII)	0.0031	0.31	1.7E-04	3.6E-04	2.9E-04	5.0E-05
Galaxolide (HHCB)	0.0044	0.44	2.4E-04	3.9E-04	3.2E-04	5.5E-05
Tonalide (AHTN)	0.0031	0.31	1.7E-04	2.9E-04	2.4E-04	4.0E-05
Exaltone	-	-	-	1.0E-03	8.5E-04	1.5E-04
Muskone	-	-	-	2.3E-03	1.9E-03	3.2E-04
Exaltolide	-	-	-	5.5E-03	4.5E-03	7.7E-04
Ambrettolide	-	-	-	2.9E-03	2.4E-03	4.1E-04
16-Hexadecanolide	-	-	-	9.6E-04	7.9E-04	1.4E-04
Musk MC-4	-	-	-	5.4E-04	4.4E-04	7.5E-05
Cervolide	-	-	-	3.1E-03	2.6E-03	4.4E-04
Ethylene brassylate	-	-	-	2.9E-04	2.4E-04	4.0E-05
Compound	Tributary surfac	ce water	WWTP Effluent		Soils	
	ng/L		ng/L		ng/g	
Cashmeran (DPMI)	0.082		0.0087		0.0073	3
Celestolide (ADBI)	0.041		0.0043		0.0036	5
Phantolide (AHMI)	0.038		0.0040		0.0034	1
Traseolide (ATII)	0.039		0.0041		0.0035	5
Galaxolide (HHCB)	0.055		0.0057		0.0048	3
Tonalide (AHTN)	0.039		0.0041		0.0035	5

149 Table S5 Synthetic musk compounds (SMCs) in mean blanks ± standard deviations for air

150 (ng/m³) and water (ng/L). n = number of blanks. nd = non-detect; "-" = not analyzed. Assumed

151 volume for Indoor air = 25 m³; U-R transect air = 250 m³; Urban air = 450 m³; WWTP air = 280

152 m^3 ; Rural air = 340 m^3 ; Arctic air = 2000 m^3 , tributary surface water = 18 L; WWTP effluent = 2

153 L; soils = 25 g dry weight, 10% moisture

Compound	Indoor air	U-R air	Urban air	WWTP air	Rural air	Remote air
-	(<i>n</i> = 13)	transect	(n = 3)	(<i>n</i> = 15)	(n = 8)	(n = 8)
		(<i>n</i> = 13)				
	ng/m ³					
Musk Tibetene (MT)	-	-	-	nd	nd	nd
Musk Ambrette (MA)	-	-	-	nd	nd	nd
Musk Moskene (MM)	-	-	-	nd	nd	nd
Musk Ketone (MK)	-	-	-	nd	nd	nd
Musk Xylene (MX)	-	-	-	nd	nd	nd
1-Methyl-Alpha-Ionone	-	-	-	nd	nd	nd
Cashmeran (DPMI)	nd	nd	nd	nd	nd	nd
Iso E super (OTNE)	-	-	-	nd	nd	nd
Celestolide (ADBI)	$0.076 \pm$	$0.0076 \pm$	$0.0017 \pm$	$0.050 \pm$	nd	nd
	0.094	0.0094	7.7e-04	0.014		
Phantolide (AHMI)	$1.9E-03 \pm$	$1.9E-04 \pm$	$5.0E-04 \pm$	$0.044 \pm$	nd	nd
	4.8E-03	4.8E-04	5.8E-04	0.0003		
Traseolide (ATII)	$0.020 \pm$	$0.0020 \pm$	$0.0013 \pm$	nd	nd	nd
	0.018	0.0018	0.00085			
Galaxolide (HHCB)	$1.8 \pm$	$0.18 \pm$	$0.15 \pm$	$0.15 \pm$	$0.033 \pm$	$0.0049 \pm$
	1.1	0.11	0.041	0.10	0.0059	0.0053
Tonalide (AHTN)	$0.35 \pm$	$0.035 \pm$	$0.026 \pm$	$0.089 \pm$	$0.032 \pm$	nd
	0.17	0.017	0.0079	0.028	0.0003	
Exaltone	-	-	-	nd	nd	nd
Muskone	-	-	-	nd	nd	nd
Exaltolide	-	-	-	nd	nd	nd
Ambrettolide	-	-	-	nd	nd	nd
16-Hexadecanolide	-	-	-	$0.067 \pm$	nd	nd
				0.016		
Musk MC-4	-	-	-	$0.045 \pm$	nd	nd
				0.0009		
Cervolide	-	-	-	nd	nd	nd
Ethylene brassylate	-	-	-	$0.083 \pm$	nd	$0.0013 \pm$
				0.021		0.0016
Compound	Tributary su	rface water	WWT	P Effluent		Soils
*	(n =	- 3)	(n	n = 3)	(1	n = 5)
	ng	′L	r	ng/L		ng/g
Cashmeran (DPMI)	1.4 ±	=0.25	nd		nd	
Celestolide (ADBI)	0.054	4 ±0.25	0.47	±0.10	0.00	67±0.0073
Phantolide (AHMI)	0.00	95 ±0.11	0.90	0±1.3	nd	
Traseolide (ATII)	0.02	1 ±0.011	nd		nd	
Galaxolide (HHCB)	1.1 ±	=0.57	11±2.	6	0.61	±0.15
Tonalide (AHTN)	0.53	±0.14	6.8±	6.5	0.09	4±0.047

155 Table S6. Concentrations (ng/m³) of synthetic musk compounds (SMCs) in indoor air from (a) homes, (b) offices and "other". nd =

156 non-detect.

157 a) Homes

РСМ	Abbrev	can01	can02	can04	can05	can08	can09	can13	can14	can15	can20
Cashmeran	DPMI	160	150	0.028	0.16	0.055	0.15	0.093	0.040	0.081	0.37
Celestolide	ADBI	0.15	0.94	0.28	0.12	0.24	0.14	0.079	0.88	0.46	0.24
Phantolide	AHMI	nd	0.14	0.023	nd	0.27	0.034	0.012	0.025	0.038	0.021
Traseolide	ATII	0.053	13	0.35	0.20	0.29	0.037	0.043	0.074	0.25	0.092
Galaxolide	HHCB	2.6	15	7.4	4.3	18	4.7	4.2	3.4	8.0	8.2
Tonalide	AHTN	0.91	17	5.9	3.2	14	3.5	1.3	1.8	4.4	2.1

158

159 b) Offices and "other"

РСМ	Abbrev	can03	can06	can07	can10	can11	can12	can16	can17	can18	can19
Cashmeran	DPMI	0.030	0.058	0.030	79	0.0090	0.053	0.20	0.14	0.094	0.025
Celestolide	ADBI	0.025	0.17	0.047	0.17	0.011	0.13	0.29	0.030	0.083	0.044
Phantolide	AHMI	nd	0.072	0.0413	0.040	nd	0.056	0.48	0.010	0.015	0.035
Traseolide	ATII	0.026	0.12	0.049	0.15	0.0060	0.18	0.29	0.025	0.036	0.066
Galaxolide	HHCB	0.45	12	1.6	4.9	0.30	5.7	12	1.0	1.1	3.6
Tonalide	AHTN	0.18	3.1	0.69	2.0	0.090	2.5	4.90	0.73	0.56	1.4

162 Table S7 Concentrations (ng/m³) of synthetic musk compound (SMCs) in outdoor air along the

163 (a) East (b) West and (c) North transect. D indicates the distance extended from the urban center.

164 Nd = non-detect.

		Sample							
Season	Transect	ID	D (km)*	DPMI	ADBI	AHMI	ATII	HHCB	AHTN
Autumn	East	Center	1.5	nd	0.025	0.019	0.037	2.3	0.63
		E1	1.7	nd	0.031	0.021	0.042	2.7	0.71
		E5	3	nd	0.017	0.013	0.022	1.4	0.37
		E10	6.6	nd	0.018	0.014	0.026	1.5	0.40
		E20	15	nd	0.019	0.010	0.022	1.3	0.37
		E40	34	nd	0.011	0.010	0.014	1.1	0.25
	West	W1	2.7	nd	0.020	0.016	0.032	2.0	0.59
		W5	4.6	nd	0.026	0.018	0.035	2.5	0.71
		W10	8.9	nd	0.0082	0.0091	0.017	1.1	0.23
		W20	16	nd	0.0066	0.0093	0.014	0.91	0.21
		W40	33	nd	nd	0.0052	0.0067	0.45	0.082
		W60	48	nd	nd	0.0041	0.0047	0.24	0.067
	North	S5	4.4	nd	0.0033	0.0048	0.0087	0.77	0.12
		N1	3.2	nd	0.060	0.010	0.045	0.87	0.40
		N5	7	nd	0.015	0.011	0.016	1.0	0.26
		N10	11	nd	0.009	0.011	0.013	1.0	0.24
		N20	20	nd	0.0066	0.0086	0.011	0.71	0.19
		N40	41	nd	nd	0.0044	0.0031	0.28	0.071
		N80	72	nd	nd	nd	nd	nd	nd
Winter	East	Center	1.5	nd	0.018	0.011	0.028	2.1	0.41
		E1	1.7	nd	nd	nd	0.023	2.0	0.39
		E5	3	nd	nd	nd	0.010	1.0	0.17
		E10	6.6	nd	0.0044	0.0060	0.013	1.1	0.22
		E20	15	nd	nd	nd	0.011	1.0	0.20
		E40	34	nd	nd	nd	0.0024	0.26	0.047
	West	W1	2.7	nd	0.016	0.020	0.024	1.7	0.35
		W5	4.6	nd	0.017	0.015	0.024	1.9	0.50
		W10	8.9	nd	nd	nd	0.032	1.8	0.28
		W20	16	nd	nd	0.0041	0.0074	0.67	0.11
		W40	33	nd	nd	nd	0.0033	0.35	0.046
		W60	48	nd	nd	0.0069	0.0034	0.24	0.040
	North	S5	4.4	nd	0.0013	0.0056	0.006	0.57	0.060
		N1	3.2	nd	0.0053	0.0068	0.016	1.0	0.19
		N5	7	nd	0.027	0.0058	0.012	1.4	0.21
		N10	11	nd	0.0042	0.0082	0.011	1.2	0.20
		N20	20	nd	nd	nd	0.0072	0.74	0.13
		N40	41	nd	nd	nd	0.016	0.87	0.09
		N80	72	nd	nd	nd	nd	nd	nd
Spring	East	Center	1.5	nd	0.011	0.014	0.044	2.6	0.76
		E1	1.7	nd	0.019	0.019	0.043	3.5	0.98
		E5	3	nd	0.009	0.008	0.023	1.5	0.38
		E10	6.6	nd	0.014	0.012	0.032	1.9	0.48
		E20	15	nd	0.0091	0.0087	0.026	1.5	0.44

		Sample							
Season	Transect	D	D (km)*	DPMI	ADBI	AHMI	ATII	HHCB	AHTN
		E40	34	nd	0.0051	0.0074	0.015	1.1	0.28
	West	W1	2.7	nd	0.020	0.016	0.033	2.2	0.67
		W5	4.6	nd	0.018	0.016	0.048	2.8	0.88
		W10	8.9	nd	0.0044	0.0031	0.017	0.88	0.19
		W20	16	nd	0.010	0.0051	0.010	0.65	0.16
		W40	33	nd	0.0056	0.0032	0.0056	0.31	0.079
		W60	48	nd	0.0046	0.0006	nd	nd	0.0083
	North	S5	4.4	nd	0.0010	0.0026	0.0073	1.0	0.063
		N1	3.2	nd	0.0060	nd	0.020	1.0	0.22
		N5	7	nd	0.029	0.0094	0.023	1.8	0.39
		N10	11	nd	0.0069	0.0085	0.016	1.0	0.30
		N20	20	nd	nd	0.0034	0.0076	0.38	0.12
		N40	41	nd	0.012	0.0037	0.0048	0.33	0.094
		N80	72	nd	0.0083	nd	nd	nd	0.0005
Summer	East	Center	1.5	nd	0.035	0.019	0.034	2.1	0.57
		E1	1.7	nd	0.074	0.020	0.035	2.6	0.74
		E5	3	nd	0.095	0.011	0.018	1.1	0.24
		E10	6.6	nd	0.038	0.012	0.018	1.2	0.28
		E20	15	nd	0.35	0.024	0.029	1.2	0.36
		E40	34	nd	0.0083	0.0051	0.0057	0.44	0.10
	West	W1	2.7	nd	0.046	0.017	0.030	1.7	0.50
		W5	4.6	nd	0.035	0.023	0.038	2.1	0.66
		W10	8.9	nd	0.095	0.011	0.016	0.78	0.18
		W20	16	nd	0.017	0.0074	0.012	0.64	0.15
		W40	33	nd	0.0075	0.0056	0.0055	0.38	0.081
		W60	48	nd	0.11	0.0065	0.0024	0.060	0.022
	North	S5	4.4	nd	0.010	0.006	0.010	0.84	0.11
		N1	3.2	nd	0.032	0.010	0.017	0.93	0.22
		N5	7	nd	0.087	0.012	0.016	1.1	0.23
		N10	11	nd	0.020	0.0079	0.012	0.71	0.19
		N20	20	nd	0.054	0.0090	0.0094	0.45	0.12
		N40	41	nd	0.0064	0.0041	0.0026	0.14	0.049
		N80	72	nd	nd	0.0010	nd	nd	nd

167 Table S8 Total air concentration (ng/m³, gas and particle phase) of synthetic musk compounds

168 (SMCs) in the urban site, downtown Toronto. Samples were taken using high-volume active

169 sampling method. nd = non-detect

	Temp						
Sample ID	(°C)	DPMI	ADBI	AHMI	ATII	HHCB	AHTN
15-10-07-PCM	10	nd	0.044	0.021	0.033	2.0	0.39
27-10-07-PCM	7.8	nd	0.022	0.005	0.016	0.77	0.17
8-11-07-PCM	3.9	nd	0.019	0.006	0.014	0.97	0.16
20-11-07-PCM	5.6	nd	0.14	0.011	0.025	2.5	0.32
2-12-07-PCM	-1.2	nd	0.020	0.007	0.019	0.95	0.20
14-12-07-PCM	-6.6	nd	0.029	0.004	0.014	1.0	0.15
26-12-07-PCM	-0.6	nd	0.015	0.005	0.013	0.76	0.17
7-1-08-PCM	12	nd	0.045	0.015	0.038	2.0	0.41
19-1-08-PCM	-9.3	nd	0.010	0.001	0.012	0.59	0.08
31-1-08-PCM	-5.2	nd	0.024	0.007	0.016	1.5	0.22
12-2-08-PCM	-7.8	nd	0.021	0.005	0.014	1.1	0.16
24-2-08-PCM	-4.0	nd	0.025	0.007	0.016	1.2	0.23
7-3-08-PCM	-5.4	nd	0.011	0.003	0.008	0.55	0.11
19-3-08-PCM	1.3	nd	0.025	0.009	0.019	1.3	0.26
31-3-08-PCM	6.1	nd	0.029	0.016	0.021	1.7	0.38
12-4-08-PCM	5.1	nd	0.11	0.011	0.020	1.4	0.29
24-4-08-PCM	13	nd	0.020	0.008	0.016	1.2	0.28
6-5-08-PCM	12	nd	0.14	0.020	0.049	3.5	0.63
18-5-08-PCM	7.5	nd	0.011	0.003	0.009	0.56	0.13
30-5-08-PCM	16	nd	0.041	0.017	0.034	3.4	0.58
11-6-08-PCM	19	nd	0.012	0.004	0.015	1.1	0.26
23-6-08-PCM	19	nd	0.035	0.014	0.026	2.1	0.46
5-7-08-PCM	19	nd	0.026	0.012	0.023	1.9	0.42
17-7-08-PCM	26	nd	0.009	0.007	0.015	1.4	0.34
29-7-08-PCM	22	nd	0.005	0.004	0.009	0.62	0.15
10-8-08-PCM	16	nd	0.003	0.002	0.001	0.41	0.42
22-8-08-PCM	22	nd	0.020	0.012	0.034	1.8	0.51
3-9-08-PCM	22	nd	0.010	0.007	0.014	1.3	0.21
15-9-08-PCM	13	nd	0.033	0.005	0.020	1.6	0.28
27-9-08-PCM	17	nd	0.016	0.010	0.021	1.5	0.33
9-10-08-PCM	13	nd	0.009	0.0004	0.003	0.015	0.006
21-10-08-PCM	3.9	nd	0.006	0.002	0.005	0.41	0.061

Table S9 Concentrations of synthetic musk compounds (SMCs) in air from wastewater treatment plants (WWTPs) (ng/m³). ON = onsite air; OFF = Off-site air; MK = musk ketone; MX = musk xylene; 16-HxD = 16- Hexadecanolide; EtBrss = Ethylene Brassylate; nd = non-detect

WWTP	Site	Season	MK	MX	DPMI	ADBI	AHMI	HHCB	AHTN	16-HxD	Musk MC-4	Cervolide	EtBrass
UR-AS-1	ON	Winter	0.17	0.14	nd	1.4	0.44	109	34	nd	0.027	11	0.029
UR-AS-1	ON	Summer	0.29	0.27	7.3	3.1	1.0	122	55	0.29	0.026	21	0.034
UR-AS-1	OFF	Winter	nd	nd	nd	0.011	0.04	0.55	0.35	nd	0.020	nd	0.015
UR-AS-1	OFF	Summer	0.083	nd	nd	0.027	0.05	2.3	0.78	0.29	0.013	0.30	0.064
UR-AS-2	ON	Winter	0.14	0.11	3.6	1.4	0.23	72	27	nd	0.023	5.5	0.058
UR-AS-2	ON	Summer	0.22	0.12	5.7	2.8	0.63	113	50	nd	0.016	15	nd
UR-AS-2	OFF	Winter	0.092	0.084	0.95	0.28	0.07	12	7.3	nd	0.034	1.5	0.062
UR-AS-2	OFF	Summer	0.12	0.11	1.1	0.49	0.16	32	15	0.19	0.018	1.9	nd
UR-AS-3	ON	Winter	0.15	0.16	3.3	1.4	0.42	42	20	0.11	0.033	18	0.044
UR-AS-3	ON	Summer	0.20	0.14	4.4	2.9	0.9	100	39	0.29	0.030	21	0.084
UR-AS-3	OFF	Winter	nd	nd	nd	0.0090	nd	0.79	0.19	nd	0.027	nd	0.039
UR-AS-3	OFF	Summer	0.094	0.10	nd	0.054	0.060	2.7	1.0	0.32	0.030	0.53	0.064
TW-EA-1	ON	Winter	0.090	nd	0.94	0.15	0.10	10	2.6	nd	0.0049	0.77	0.0017
TW-EA-1	ON	Summer	0.020	0.10	1.4	0.35	0.17	21	6.0	0.16	0.0089	1.7	0.048
TW-EA-1	OFF	Winter	nd	nd	nd	5.2E-04	nd	0.056	0.0080	nd	0.0033	nd	nd
TW-EA-1	OFF	Summer	nd	nd	nd	0.0014	0.049	0.27	0.12	0.15	0.0011	nd	0.029
TW-EA-2	ON	Winter	0.091	nd	0.30	0.11	0.09	4.9	3.3	0.13	nd	nd	0.015
TW-EA-2	ON	Summer	0.10	nd	0.68	0.66	0.23	31	16	0.11	0.0045	1.7	nd
TW-EA-2	OFF	Winter	nd	nd	nd	2.8E-04	nd	nd	0.012	0.12	nd	nd	0.0010
TW-EA-2	OFF	Summer	nd	nd	nd	0.006	0.048	0.18	0.13	0.10	0.0015	0.09	nd
TW-EA-3	ON	Winter	0.078	nd	0.27	0.033	0.054	3.6	1.0	0.0062	0.0020	0.16	nd
TW-EA-3	ON	Summer	0.092	0.087	1.4	0.16	0.091	12	3.3	0.17	0.0058	0.82	0.047
TW-EA-3	OFF	Winter	nd	nd	nd	7.7E-04	nd	0.059	0.049	0.024	nd	nd	0.018
TW-EA-3	OFF	Summer	nd	nd	nd	0.0073	0.049	0.51	0.16	0.13	0.0040	0.14	2.9E-04
RU-LG-1	ON	Winter	nd	nd	nd	nd	nd	0.050	0.031	nd	0.0046	nd	0.026
RU-LG-1	ON	Summer	nd	nd	nd	0.0031	0.047	0.40	0.18	0.072	9.0E-04	nd	nd
RU-LG-1	OFF	Winter	nd	nd	nd	nd	nd	0.048	0.020	0.077	0.0026	nd	0.0045
RU-LG-1	OFF	Summer	nd	nd	nd	0.0029	nd	0.44	0.079	0.022	nd	nd	nd
RU-LG-2	ON	Winter	nd	nd	nd	nd	nd	0.13	0.019	0.16	nd	nd	nd
RU-LG-2	ON	Summer	nd	nd	nd	0.017	0.050	1.8	0.62	0.052	nd	nd	nd
RU-LG-2	OFF	Winter	nd	nd	nd	nd	nd	0.034	0.016	0.18	nd	nd	nd
RU-LG-2	OFF	Summer	nd	nd	nd	0.0072	0.048	0.24	0.33	nd	nd	nd	0.032

Sample ID	Temp (°C)	ННСВ	ATHN
PPF100108	-11	nd	nd
PPF100120	-2.1	0.0072	0.0081
PPF100201	-3.2	0.0083	0.0082
PPF100213	-3.8	0.0070	0.0084
PPF100225	0.16	0.0082	0.0087
PPF100309	1.9	0.0068	0.0083
PPF100321	2.5	0.0070	0.0082
PPF100402	13	0.010	0.0094
PPF100414	8.7	0.010	0.0087
PPF100426	9.4	0.0079	nd
PPF100508	6.8	0.0090	0.0084
PPF100520	14	0.012	0.011
PPF100601	18	0.024	0.013
PPF100613	18	0.017	0.011
PPF100625	18	0.017	0.011
PPF100707	24	0.013	0.010
PPF100719	21	0.017	0.011
PPF100731	20	0.013	0.010
PPF100812	22	0.0093	0.0095
PPF100824	21	0.0093	0.0098
PPF100905	22	0.019	0.010
PPF100917	14	0.0092	0.0091
PPF100929	18	0.016	0.012
PPF101011	10	0.013	0.010
PPF101023	9.2	0.012	0.0097
PPF101104	6.5	0.014	0.0099
PPF101116	11	0.016	0.011
PPF101128	4.8	0.010	0.0087
PPF101210	3.2	0.011	0.0085
PPF101222	-3.2	0.0078	0.0083

175 Table S10 Concentrations of HHCB and AHTN in rural air from the Great Lakes Basin. nd =176 non-detect

Literature	Country	Description	Date of sampling	ADBI	ннсв	AHMI	AHTN	МК	MX	ATII	Comment
Fromme et al. ¹²	Germany	Indoor/apartment & kindergarden	2000-2001	BDL ^a	120	22	47	BDL	BDL	BDL	Mean
Sofuoglu et al. ¹³	Turkey	Indoor/Classroom	2009	1.5	270	0.18	58	0.12	9.9	59	Mean
Sofuoglu et al. ¹³	Turkey	Indoor/Sports centre	2009	1.01	145	0.08	41	BDL	3.2	31	Mean
Peck et al. ¹⁴	US	Urban/Cedar Rapids	2001 Oct – 2002 May	0.01	0.80	BDL	0.33	BDL	BDL	BDL	Median
Peck et al. ¹⁵	US	Urban/ Milwaukee	2001 Jun	0.19	4.1	0.24	2.5	0.093	0.032	0.17	Mean
Ramirez et al. ¹⁶	Spain	Urban	Na	BDL	10.5	BDL	2.4	1.5	4.0	BDL	Mean
McDonough et al. ¹⁷	Canada	Urban/Toronto waterfront nearshore buoys	2012 Summer	0.0006	1.5	0.024	0.30	na	na	0.49	Mean
Peck et al. ¹⁴	US	Rural/ Lake Erie	2003 Aug	BDL	0.12	BDL	0.15	BDL	BDL	BDL	Median
Peck et al. ¹⁴	US	Rural /Lake Ontario	2003 Aug	BDL	0.37	BDL	0.16	BDL	BDL	BDL	Median
Peck et al. ¹⁴	US	Rural/Hills	2003 Aug	BDL	0.036	BDL	0.032	BDL	BDL	BDL	Median
Peck et al. ¹⁵	US	Rural/Shoreline, Offshore	2001 Jun; Jun 1999- May 2000	0.042	1.1	0.039	0.49	0.13	0.014	0.04	Mean
Xie et al. ¹⁸	Germany	Rural, North Germany	2004 Aug	na ^b	0.060	na	0.015	na	na	na	Mean
McDonough et al. ¹⁷	Canada	Rural/Offshore, nearshore buoys of Lake Erie/Lake Ontario	2012 Summer	0.0021	BDL	0.0022	0.0054	na	na	0.047	Mean
McDonough et al. ¹⁷	Canada	Rural/Shoreline of Lake Erie/Lake Ontario	2012 Summer	0.0028	0.36	0.011	0.15	na	na	0.1	Mean
McDonough et al. ¹⁷	Canada	Rural/Shoreline of Lake Erie/Lake Ontario	2011 Winter	0.0002	0.029	0.0008	0.017	na	na	0.022	Mean
Kallenborn et al. ¹⁹	Norway	Remote, Kjeller,	1998 Winter	na	0.15	na	0.052	0.010	0.023	BDL	Mean ^c
Xie et al. ¹⁸	North Sea	Remote	2004 Aug	na	0.028	na	0.018	na	na	na	Median
Xie et al. ¹⁸	Arctic	Remote	2004 Aug	na	0.004	na	0.017	na	na	na	Median

178	Table S11	Literature	e data o	f synthetic n	nusk compoui	nds (SMCs)) in air.	Data are	e in units	of ng/m ³ .

179 ^a BDL = below detection limit; ^b NA = not analyzed; ^c calculated from individual data

		Humber R.	Humber R.	East Humber	Little Rouge	Rouge R.	Highland Cr.	Don River	Humber R. Downstream	Mimico Cr.	Etobicoke Cr.
		Upstream	Midstream	R.	Cr.		<hr/>	.	4 1)	4 1 1	
		(rural)	(rural)	(rural)	(rural)	(rural)	(urban)	(urban)	(urban)	(urban)	(urban)
Casherman	Median	nd	nd	nd	nd	nd	nd	0.233	nd	nd	nd
(DPMI)	Min	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Max	nd	0.19	nd	nd	0.038	0.51	2.8	0.29	0.44	0.71
Celestolide	Median	nd	nd	nd	nd	nd	0.33	0.89	0.053	0.39	0.086
(ADBI)	Min	nd	nd	nd	nd	nd	0.0054	0.30	nd	0.034	0.014
. ,	Max	nd	0.060	0.11	nd	0.042	1.8	2.04	0.85	1.002	1.2
Phantolide	Median	0.005	0.028	0.023	0.013	0.005	nd	0.97	0.026	nd	0.007
(AHMI)	Min	nd	nd	nd	nd	nd	nd	0.60	nd	nd	nd
	Max	0.018	0.054	0.11	0.051	0.059	0.20	5.5	0.11	0.22	0.16
Traseolide	Median	nd	nd	0.014	nd	nd	0.14	1.4	0.0011	nd	nd
(ATII)	Min	nd	nd	nd	nd	nd	nd	0.44	nd	nd	nd
	Max	nd	0.073	0.086	nd	0.069	3.07	4.0	0.35	nd	0.10
Galaxolide	Median	0.014	2.3	0.95	0.49	1.2	15	83	8	3.8	2.9
(HHCB)	Min	nd	1.01	0.17	nd	0.37	6.3	33	4.5	2.3	1.4
	Max	0.29	5.2	4.2	0.66	2.1	108	243	42	8.8	104
Tonalide	Median	nd	0.22	0.40	0.18	0.36	7.0	15	2.1	1.4	1.0
(AHTN)	Min	nd	0.019	nd	nd	0.058	1.2	6.5	0.73	0.35	0.64
、 ,	Max	0.25	0.73	0.92	0.22	0.67	24	41	6.9	4.0	36

 180
 Table S12 Median and range concentration of SMCs in tributary surface waters (ng/L) in urban and rural sites. nd = non-detect.

 181
 End
 Detect
 Detect
 Detect
 Mimice

182

Table S13 Median and range concentrations (ng/L) of synthetic musk compounds (SMCs) in
wastewater treatment plant (WWTP) effluents

186

WWTP	Median	Sd	Min	Max
Plant 1 (<i>n</i> = 4)				
Cashmeran (DPMI)	860	190	700	1100
Celestolide (ADBI)	6.0	0.56	5.7	6.8
Phantolide (AHMI)	3.7	0.90	2.5	4.7
Traseolide (ATII)	8.3	1.6	7.2	11
Galaxolide (HHCB)	1000	380	700	1500
Tonalide (AHTN)	140	22	120	170
Sum	2100	430	1700	2600
Plant 2 $(n = 6)$				
Cashmeran (DPMI)	940	3500	730	9600
Celestolide (ADBI)	11	8.7	6.4	30
Phantolide (AHMI)	6.7	4.4	3.9	16
Traseolide (ATII)	13	29	8.3	82
Galaxolide (HHCB)	1800	1400	700	4700
Tonalide (AHTN)	210	160	120	560
Sum	3300	3900	1600	11500
Plant 3 (<i>n</i> = 7)				
Cashmeran (DPMI)	580	2100	76	6100
Celestolide (ADBI)	7.1	2.9	2.9	12
Phantolide (AHMI)	3.9	0.9	2.2	4.6
Traseolide (ATII)	13	5.9	5.3	24
Galaxolide (HHCB)	1300	630	360	2200
Tonalide (AHTN)	160	52	68	230
Sum	1800	2500	860	8200

189 Figure S1 Source-Receptor Framework ²⁰

191 Figure S2 Composition of synthetic musk compounds (SMCs) in air (data expressed as percent of total 192 concentration). Wastewater treatment plant (WWTP)-On and WWTP-Off represented air taken from 193 the summer. Indoor air did not include the 3 samples with high DPMI concentrations. Urban and rural 194 air represented samples taken over one year period.

196 Figure S3 Air concentrations of sum of 11 synthetic musk compounds (SMCs) at wastewater treatment197 plants (WWTPs), a) on-site and b) off-site during summer and winter period.

Figure S4 Seasonal variation of synthetic musk compounds (SMCs) in surface water of tributaries. Data represented sum of six 199 polycyclic musk compounds (PCMs), i.e. DPMI, ADBI, AHMI, ATII, HHCB, AHTN. 200

Sampling Event #1 Winter Melt Event, January 2008; #2 Winter Base Flow (Grab Samples) (27 Feb 2008); #3 Spring Melt Event (2 201

April 2008); #4 End of Spring Melt (4 April 2008); #5 Wet Weather Rain Event (22 April 2008); #6 Base Flow May'08; #7 July 2008 202 Wet Event

206 References

- X. Zhang, M. L. Diamond, M. Robson and S. Harrad, Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada, *Environ Sci Technol*, 2011, 45, 3268-3274.
- L. Melymuk, M. Robson, P. A. Helm and M. L. Diamond, Evaluation of passive air sampler
 calibrations: selection of sampling rates and implications for the measurement of persistent organic
 pollutants in air, *Atmos Environ*, 2011, 45, 1867-1875.
- L. Melymuk, M. Robson, P. A. Helm and M. L. Diamond, Application of land use regression to identify
 sources and assess spatial variation in urban SVOC concentrations, *Environ Sci Technol*, 2013, 47,
 1887-1895.
- L. Melymuk, M. Robson, P. A. Helm and M. L. Diamond, PCBs, PBDEs, and PAHs in Toronto air:
 Spatial and seasonal trends and implications for contaminant transport, *Sci Total Environ*, 2012, 429, 272-280.
- M. Shoeib, J. Schuster, C. Rauert, K. Su, S. A. Smyth and T. Harner, Emission of poly and
 perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants, *Environ Pollut*, 2016, **218**, 595-604.
- C. Shunthirasingham, A. Gawor, H. Hung, K. A. Brice, K. Su, N. Alexandrou, H. Dryfhout-Clark, S.
 Backus, E. Sverko, C. Shin, R. Park and R. Noronha, Atmospheric concentrations and loadings of
 organochlorine pesticides and polychlorinated biphenyls in the Canadian Great Lakes Basin (GLB):
 Spatial and temporal analysis (1992–2012), *Environ Pollut*, 2016, 217, 124-133.
- F. Wong, M. Shoeib, A. Katsoyiannis, S. Eckhardt, A. Stohl, P. Bohlin-Nizzetto, H. Li, P. Fellin, Y. Su
 and H. Hung, Assessing temporal trends and source regions of per- and polyfluoroalkyl substances
 (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP), *Atmos Environ*, 2018,
 172, 65-73.
- J. Paasivirta, S. Sinkkonen, A. L. Rantalainen, D. Broman and Y. Zebühr, Temperature dependent properties of environmentally important synthetic musks, *Environ Sci Pollut Res*, 2002, 9, 345-355.
- USEPA, 2018. Estimation Programs Interface Suite[™] for Microsoft[®] Windows, v 4.11. United States
 Environmental Protection Agency, Washington, DC, USA.
- J. W. Tas, F. Balk, R. A. Ford and E. J. van de Plasschem, Environmental risk assessment of musk
 ketone and musk xylene in the Netherlands in accordance with the EU-TGD, *Chemosphere*, 1997, 35,
 2973-3002.
- S. M. Aschmann, J. Arey, R. Atkinson and S. L. Simonich, Atmospheric lifetimes and fates of selected
 fragrance materials and volatile model compounds, *Environ Sci Technol*, 2001, **35**, 3595-3600.
- H. Fromme, T. Lahrz, M. Piloty, H. Gebhart, A. Oddoy and H. Rüden, Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany), *Indoor Air*, 2004, 14, 188-195.

- A. Sofuoglu, N. Kiymet, P. Kavcar and S. C. Sofuoglu, Polycyclic and nitro musks in indoor air: A primary school classroom and a women's sport center, *Indoor Air*, 2010, 20, 515-522.
- A. M. Peck, E. K. Linebaugh and K. C. Hornbuckle, Synthetic musk fragrances in Lake Erie and Lake
 Ontario sediment cores, *Environ Sci Technol*, 2006, 40, 5629-5635.
- A. M. Peck and K. C. Hornbuckle, Synthetic musk fragrances in Lake Michigan, *Environ Sci Technol*, 2004, 38, 367-372.
- 16. N. Ramírez, R. M. Marcé and F. Borrull, Development of a thermal desorption-gas chromatographymass spectrometry method for determining personal care products in air, *J Chrom A*, 2010, **1217**, 44304438.
- 251 17. C. A. McDonough, P. A. Helm, D. Muir, G. Puggioni and R. Lohmann, Polycyclic musks in the air and
 water of the lower Great Lakes: spatial distribution and volatilization from surface waters, *Environ Sci Technol*, 2016, **50**, 11575-11583.
- Z. Xie, R. Ebinghaus, C. Temme, O. Heemken and W. Ruck, Air-sea exchange fluxes of synthetic
 polycyclic musks in the North Sea and the Arctic, *Environ Sci Technol*, 2007, 41, 5654-5659.
- R. Kallenborn, R. Gatermann, S. Planting, G. G. Rimkus, M. Lund, M. Schlabach and I. C. Burkow, Gas
 chromatographic determination of synthetic musk compounds in Norwegian air samples, *J Chrom A*,
 1999, 846, 295-306.
- 259 20. S. Harrad and M. L. Diamond, Exposure to polybrominated diphenyl ethers (PBDEs) and
 260 polychlorinated diphenyls (PCBs): current and future scenarios, *Atmos Environ*, 2006, 40, 1187-1188.