Supporting information for accuracy of methods for reporting inorganic element concentrations and radioactivity in oil and gas wastewaters from the Appalachian Basin, U.S. based on an inter-laboratory comparison

Tasker, T.L.^{a*}, Burgos, W.D.^a, Ajemigbitse, M.A.^a, Lauer, N.E.^b, Gusa, A.V.^c, Kuatbek, M.^{d,e,}, May, D.^f, Landis, J.D.^g, Alessi, D.S.^h, Johnsen, A.M.^d, Kaste, J.M.ⁱ, Headrick, K.^j, Wilke, F.D.H.^k, McNeal, M.¹, Engle, M.^m, Jubb, A.M.^m, Vidic, R.^c, Vengosh, A.^b, Warner, N.R.^a

^aDepartment of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania 16802, United States

^bDivision of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States

^cDepartment of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States

^dRadiation Science and Engineering Center, The Pennsylvania State University, 101 Breazeale Nuclear Reactor, University Park, Pennsylvania 16802, United States

^eDepartment of Mechanical and Nuclear Engineering, The Pennsylvania State University, 137 Reber Building, University Park, Pennsylvania, 16802, United States

^fState Hygienic Laboratory, University of Iowa, 2490 Crosspark Road, Coralville, Iowa 52241, United States

^gDepartment of Earth Sciences, Dartmouth College, 6105 Fairchild Hall, Hanover, New Hampshire 03755, United States

^hDepartment of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada

ⁱDepartment of Geology, The College of William & Mary, Williamsburg, Virginia 23185, United States

^jMaxxam Analytics, 6790 Kitimat Road, Unit 4, Mississauga, Ontario L5N 5L9, Canada

^kHelmholtz Centre Potsdam – German Centre for Geosciences (GFZ), Telegrafenberg, Potsdam 14473, Germany

¹ACZ Laboratories, Inc., 2773 Downhill Drive, Steamboat Springs, Colorado 80487, United States

^mU.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, Virginia 20192, United States

*Corresponding author

Table S1. Methods used for cation and anion analyses. Numbers below each lab identification represents the different types of equipment used by individual labs including ICP-MS/MS (identified as 1), ICP-MS (2), Direct Plasma Spectrometry (3), ICP-OES (4), XRF (5), Neutron Activation (6), or Ion chromatography (7).

Analyte	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L13	L13	L14	L15
Li	1	2		2	4	4	4	4	2	4		4		2	6
В	1			2	4	4		2	2	4		4		2	6
Na	1		7	3	4	4	4	4	2	4	5	4		4	6
K	1	2	7		4	4	4	4	2	4	5	4			6
Mg	1	2	7	3	4	4	4	4	2	4	5	4		4	6
Ca	1	2	7	3	4	4	4	4	4	4	5	4		4	6
Sr	1	2	7	3	4	4	4	4	2	4	5	4		4	6
Ba	1			3	4	4	4	2	2	4	5	4		2	6
Al	1			2	4	4		4	2	4		4		2	6
Fe	1	2		3	4	4	4	4	2	4	5	4		2	6
Mn	1	2		3	2	4	4	4	2		5	4		2	6
Cr	1	2		2	2	4		2	2		5	2	4	2	6
Ni	1	2		2	2	4		2	2	4	5	2	4		6
Cu	1	2		2	2			2	2		5	2	4	2	6
Zn	1	2		2	2	4		2	2	4	5	2	4	2	6
As	1	2			2	4		2	2		5	2	4	2	6
Cd	1	2		2	2			2	2		5	2	4	2	6
Pb	1			2	2	4		2	2		5	2	4	2	6
Cl	7	7		7	7	7		7	7	7	5	7		7	6
Br	1	7		7	7	7		7	7	7	5	7		7	6
SO4	7	7		7	7	7		7	7	7	5	7		7	6

Analyte	Median	Q1	Q2
Br	841	327	1580
Cl	99600	51300	159000
SO4	115	20.3	337
Na	38900	22400	57500
Κ	840	221	1740
Mg	1920	871	3530
Ca	13600	5360	27800
Sr	813	175	1290
Ba	331	45.7	1130
Li	50.0	23.0	81.6
В	18.1	6.77	30.6
Al	0.80	0.25	4.00
Fe	45.0	9.48	131
Mn	11.7	3.00	41.0
Ni	0.15	0.03	0.40
Cu	0.23	0.04	0.25
Zn	0.80	0.12	2.00
As	0.10	0.05	0.10
Pb	0.03	0.02	0.03
226Ra	658	190	1780
228Ra	248	39.4	821

Table S2. Chemistry of Appalachian Basin O&G wastewaters as reported in the United States Geological Survey's produced water database¹.

Table S3. Range in percent difference for various analytes in the most recent USGS interlaboratory comparison for freshwaters². The range in percent difference is based on reported data with acceptable quality (i.e., z < 2 or z > -2).

Element	Sample	Units	MPV	F	Acceptable quality concentration range	% difference
Br	M-226	mg/L	0.06	0.03	0 - 0.12	>±109
Cl	M-226	mg/L	26.2	0.96	24.3 - 28.1	±7.36
SO4	M-226	mg/L	14.2	0.45	13.3 – 15.1	±6.27
Na	T-233	mg/L	16	0.46	15.1 - 16.9	± 5.70
Κ	T-233	mg/L	1.58	0.07	1.45 - 1.71	± 8.48
Mg	T-233	mg/L	6.71	0.15	6.41 - 7.01	±4.53
Ca	T-233	mg/L	16.7	0.45	15.8 - 17.6	±5.33
Sr	T-233	μg/L	94	3.22	87.6 - 100	± 6.85
Ba	T-233	μg/L	27.4	0.74	25.9 - 28.9	±5.41
Li	T-233	μg/L	2.57	0.03	2.52 - 2.62	± 2.02
В	T-233	μg/L	22	1.56	18.9 – 25.1	±14.2
Al	T-233	μg/L	481	21.5	438 - 524	± 8.94
Fe	T-233	μg/L	279	10.6	258 - 300	± 7.60
Mn	T-233	μg/L	18.5	0.96	16.6 - 20.4	±10.3
Ni	T-233	μg/L	1.99	0.27	1.44 - 2.54	±27.5
Cu	T-233	μg/L	3.98	0.19	3.60 - 4.36	± 9.60
Zn	T-233	μg/L	19.7	1.85	16.0 - 23.4	± 18.8
As	T-233	μg/L	4.10	0.22	3.66 - 4.54	±10.7
Pb	T-233	μg/L	0.33	0.02	0.29 - 0.38	±12.6

Table S4. Elemental ratios (mass/mass) as measured by labs in this study that reported acceptable quality values (i.e., z score that was between -2 and 2 was considered acceptable quality). In instances where no ratios are reported for a lab, the reported values were either of unacceptable or questionable quality or they did not analyze one of the cations or anions needed for calculating the ratio. S1, S2, and S3 represent samples 1, 2, and 3.

	Cl/Br			Sr/Ca			B/Cl		
	Sample #			Sample #			Sample #		
LAB	S 1	S2	S 3	S 1	S2	S 3	S1	S2	S 3
1	99.1	95.1	96		0.19	0.05		5.36E-05	8.60E-05
2	79.5	82.7	78.5						
3				0.22	0.19	0.05			
4	92.8		92.6	0.21	0.18	0.05	7.01E-05		9.76E-05
5	87.0	85.7	85.7		0.20	0.05			
7				0.23	0.19	0.05			
8	86.7	90.6	87.2	0.21	0.18	0.05	7.73E-05	6.09E-05	8.65E-05
9	105	75.4	86.6		0.17	0.04	7.72E-05	5.98E-05	8.57E-05
10				0.22	0.19				
11			90.4						
13	90.9	92.9		0.20	0.18	0.05	7.43E-05	7.01E-05	
14	87.7	95.9	100	0.22	0.19	0.05	7.47E-05	6.83E-05	8.71E-05

Lab	Equipment	Sample prep	Measurement
Lab 3	Gamma	Samples sealed in 55 mL polypropylene jars.	²²⁶ Ra (609 keV and 351
	Spectroscopy	Jar threads sealed with vacuum grease. >21	keV) and ²²⁸ Ra (911
		day storage	keV)
Lab 4	Gamma	>21 day storage. >48 hour counting time.	²²⁶ Ra (186 keV) and
	Spectroscopy	Sealed in 2 oz sediment jar to prevent ²²² Rn	²²⁸ Ra (911 keV)
		gas release.	
Lab 5	Gamma	3 L of sample sealed in 4 L Marinelli beaker.	²²⁶ Ra (weighted average
	Spectroscopy	30 day storage.	of 609 Kev, 351 keV,
			295 keV, and 242 keV),
			²²⁸ Ra (911 keV)
Lab 7a	Gamma	No sample prep. Direct counting in 125 mL	²²⁶ Ra (186 keV) and ²²⁸
	Spectroscopy	geometry	Ra (911 keV)
Lab 7b	Gamma	Co-precipitation with barium sulfate. ¹³³ Ba	²²⁶ Ra (186 keV) and ²²⁸
	Spectroscopy	yield monitor. Precipitate filtered onto 47	Ra (911 keV)
	1 15	mm filter and analyzed on gamma spec.	
Lab 8	Low-level	Co-precipitation with barium sulfate (²²⁶ Ra	²²⁶ Ra (²²² Radon
	proportional	and ²²⁸ Ra). EPA methods 904.0 and 903.1	scintillation counting)
	counters (²²⁸ Ra) and		²²⁸ Ra (²²⁸ Ac daughter
	radon flask counters		counted with low
	(²²⁶ Ra)		background
			proportional counter)
Lab 9	Canberra LB5100	Pre-concentrated with MnO ₂ and traced with	²²⁶ Ra (alpha
	gas flow counter	²²⁵ Ra (²²⁶ Ra) and co-precipitation with	spectrometry) and ²²⁸ Ra
	(²²⁸ Ra) and EG&G	barium sulfate (²²⁸ Ra)	(gas flow proportional
	Ortec alpha		counter)
	detectors		,
Lab 10	Gamma	Evaporation and analysis of 6 grams of solid.	²²⁶ Ra (186 keV) and
	Spectroscopy		²²⁸ Ra (911 keV)
Lab 11	Gamma	3.5 L of sample sealed in 4L Marinelli beaker	Not reported
	Spectroscopy	for 21 days. EPA method 901.1.	
Lab 12	Gamma	500 mL. 24 hour counting time.	²²⁶ Ra (186 keV) and
	Spectroscopy		²²⁸ Ra (911 keV)
Lab 13	Gamma	20 mL of sample sealed in liquid scintillation	²²⁶ Ra (351 keV and 609
	Spectroscopy	vial. EPA method 901.1. Counting time of 4-	keV) and ²²⁸ Ra (911
	1 15	10 hours.	keV)
Lab 14a	Gamma	3 L of sample sealed in a 4 L Marinelli	²²⁶ Ra (609 keV), ²²⁸ Ra
	Spectroscopy	beaker. >21 day storage. Counting time of 3	(911 keV)
		to 18 hours.	
Lab 14b	Gamma	3 L of sample sealed in a 4 L Marinelli	²²⁶ Ra (186 keV)
	Spectroscopy	beaker. Direct counting with no storage.	
		Counting time of 3 to 18 hours.	
Lab 15	Neutron activation	Sample evaporation. Counting time of 3 to	Not reported
	followed by gamma	18 hours.	.r
	spectroscopy		

Table S5. Methods used for radium analyses in liquids.

Lab #	Method	Sample prep	Measurement
Lab 3	Gamma Spectroscopy	Samples were packed into 40 mL jars	Count time of 48 hours. Detector calibrated using Canadian Certified Reference Materials Project. Attenuation correction was performed using the Cutshall point-source technique ³
Lab 4	Gamma Spectroscopy	Samples were packed in petri dishes and incubated (>21 days)	Count time of 24-48 hours. Detector calibrated using Canadian Certified Reference Materials Project
Lab 5	Gamma Spectroscopy	Samples were packed into 200 mL HDPE vials	Count time of 16.7 hours. Detector calibrated using NIST standards (Eckert and Ziegler)
Lab 7a	Gamma Spectroscopy	Samples were packed into petri dishes	Count time of 48 hours. Detector calibrated using Canadian Certified Reference Materials Project. ²²⁶ Ra (weighted average of 295, 352, 609 keV) and 463 keV for ²²⁸ Ra. Attenuation correction was performed using the Cutshall point-source technique ³
Lab 7b	Gamma Spectroscopy	Samples were packed into petri dishes	Count time of 48 hours. Detector calibrated using Canadian Certified Reference Materials Project. ²²⁶ Ra at 186 keV and ²²⁸ Ra at 911 keV. Attenuation correction was performed using the Cutshall point-source technique ³
Lab 8	Low-level proportional counters (²²⁸ Ra) and radon flask counters (²²⁶ Ra)	Digestion according to EPA 3050B. Final liquid volume of 100mL	Count time of 100 min. ²²⁶ Ra (²²² Radon scintillation counting) ²²⁸ Ra (²²⁸ Ac daughter counted with low background proportional counter)
Lab 9	Gamma Spectroscopy	Not described	Count time of 120 min. Detector was calibrated with NIST traceable soil (500g geometry)
Lab 10	Gamma Spectroscopy	Samples were packed into petri dishes	Count time of 24 hours.
Lab 11	Gamma Spectroscopy	Samples were packed into 0.5L Marinelli beakers	Count time of 1,000 min.
Lab 13	Gamma Spectroscopy	Samples were packed into 0.5L Marinelli beakers	Count time of 2 hours. Detector calibrated using Eckert and Ziegler standards. ²²⁶ Ra at 186 keV, ²²⁸ Ra at 911 keV
Lab 14	Gamma Spectroscopy	Samples were packed in scintillation vials and incubated (>21 days)	Count time of 7-36 hours. Detector calibrated using Canadian Certified Reference Materials Project. ²²⁶ Ra by average of ²¹⁴ Bi at 609.3 keV, ²¹⁴ Pb at 295.2 keV and 351.9 keV; ²²⁸ Ra by ²²⁸ Ac at 911.2 keV

Table S6. Methods used for Radium analyses in solids.

References

1. Blondes, MS.; Gans, KD.; Thordsen, JJ.; Reidy, ME.; Thomas, B.; Engle, MA.; Kharaka, YK.; Rowan, EL. US Geological Survey National Produced Waters Geochemical Database v2. 1 (PROVISIONAL). *United States Geological Survey*. Available at https://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters.aspx (2014).

2. United States Geological Survey. Inter-laboratory comparison study results: Spring 2018. Available at https://bqs.usgs.gov/srs_study/reports/index.php (2018).

3. Cutshall, N. H.; Larsen, I. L.; Olsen, C. R., Direct analysis of 210Pb in sediment samples: selfabsorption corrections. *Nuclear Instruments and Methods in Physics Research* **1983**, 206, (1-2), 309-312.