This journal is © The Royal Society of Chemistry 2018

Supplementary data

A Pilot Study of Metabolites of Organophosphorus Flame Retardants in

Paired Maternal Urine and Amniotic Fluid Samples: Potential Exposure Risks

of Tributyl Phosphate to Pregnant Women

Xue-yuan Bai^{a,b#}, Shao-you Lu^{c#}, Lei Xie^a, Bo Zhang^a, Shi-ming Song^a, Yuan He^a, Ji-ping

Ouyanga, Tao Zhanga,b*

^a School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun

Yat-Sen University), Guangzhou 510275, China

^c Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China

#These authors contributed to this work equally

*Corresponding author:

Tao Zhang

School of Environmental Science and Engineering, Sun Yat-Sen University

135 Xingang West Street, Guangzhou, 510275, China

Tel: 86-22-84113454

E-mail: zhangt47@mail.sysu.edu.cn

Submission to: Environmental Science: Processes & Impact

S1

Table S1
Optimized MS/MS parameters for target organophosphate metabolites.

Metabolites		Parent compounds	Precursor ion (Q1)	Product ion (Q3)	DPa (V)	EPb (V)	CEc (V)	CXPd (V)
Native standards								
bis(1,3-dichloro-2-propyl) ph	osphate	tris(1,3-dichloro-2-propyl) phosphate	318.9	35.0	-53	-4.5	-46	-11
(BDCIPP)		(TDCIPP)						
bis(2-butoxyethyl) ph	osphate	tris(2-butoxyethyl) phosphate (TBOEP)	305.0	79.0	70	-8	-40	-15
(BBOEP)								
dibutyl phosphate (DBP)		tri-n-butyl phosphate (TNBP)	209.0	78.9	-80	-7	-30	-15
di-o-cresyl phosphate (DoCP)		tricresyl phosphate (TCP)	227.1	107.0	-80	-6	-33	-17
di-p-cresyl phosphate (DpCP)			227.1	107.0	-80	-8	-32	-15
diphenyl phosphate (DPHP)		triphenyl phosphate (TPHP)	249.1	93.0	-100	-7	-45	-9
		ethylhexyl diphenyl phosphate (EHDPP)						
internal standards								
d ₁₀ -BDCIPP			329.0	35.0	-90	-10	-60	-17
d ₈ -BBOEP			305.0	79.0	-90	-7	-60	-10
d_{18} -DBP			227.3	79.0	-80	-8	-50	-10
d ₁₄ -DoCP			291.1	114.0	-90	-7	-40	-10
d ₁₄ -DpCP			291.1	114.0	-120	-7	-36	-10
d_{10} -DPHP			259.2	98.0	-90	-8	-32	-12

a DP = declustering potential.

b EP = entrance potential.

c CE = collision energies.

d CXP = collision cell exit potential.

Table S2

Parameters Used for Calculation of Total Daily Intakes of OPs in China.

	ТРНР	TnBP	
molecular weights of the parent OPs (MWp, g/mol)	326	266	
molecular weights of the metabolite of OPs (MWm, g/mol)	250	210	
F_{UE} based on in vitro human liver microsome (HLM) experiment	0.09 a	0.18 ^b	
F_{UE} based on in vitro human liver S9 fraction experiment	0.04 a	0.18 b	

 $[^]aF_{\rm UE}$ is the urinary excreted molar fraction of metabolite with respect to its parent compound, data from Van den Eede et al. $^bF_{\rm UE}$ of TnBP was from TnBP metabolism experiment of male rats from Suzuki et al.