Supporting information for:

Differences in photochemistry between seawater and freshwater for two natural organic matter samples

Laura T. Stirchak,¹ Kyle J. Moor,², Kristopher McNeill,², and D. James Donaldson*^{1,3}

- 1. Department of Chemistry, University of Toronto
- 2. Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich
- 3. Department of Physical and Environmental Sciences, University of Toronto

*author for correspondence. Email: jdonalds@chem.utoronto.ca

Excitation spectra of NOM with different concentrations of NaCl and IO
Emission spectra of NOM with different concentrations of NaCl and IO
Absorption spectra of NOM with Mg ²⁺ and IO
Fluorescence Intensity (I _{fl}) versus pH
Emission spectra of SRNOM with CO ₂ ³⁻ and SO ₄ ²⁻
Emission spectra of NOM with Fe ³⁺
Excitation and emission spectra of NOM with Mg ²⁺
Water corrected anisotropy spectra for AHA with NaCl and IO
Changes to [TMP] with time to determine k _{eff}
k _f versus [NaCl] or [IO]
$k_{\rm f}$ versus [Mg ²⁺] for AHA
Report of k _f , k _d , and k _{O2} for all 3 NOM samples with solutes

Experimental details for AHA

Aldrich Humic Acid (AHA), derived from coal,¹ was purchased as the sodium salt from Sigma Aldrich and was used without purification. Although this commercial product has been reported to contain many impurities,^{1–3} we used it without purification since our purpose was to use AHA as a "benchmark" NOM proxy. Stock AHA solutions for the optical experiments were made with 11mg/L AHA using Milli-Q deionized water. Solutions with NaCl, IO, NaHCO₃, Na₂SO₄, MgCl₂ and FeCl₃ were all prepared in the same way as the solutions with NRNOM and SRNOM. All absorption, fluorescence and anisotropy experiments were run using the same set-up as those with NRNOM and SRNOM.

The AHA solutions for the triplet NOM production were also made with 1mg/L AHA and were prepared in the same way as the other two NOM sample solutions. The TMP experimental set-up was also the same.

The experimental set-up for the time-resolved ¹O₂ phosphorescence measurements was the same as with NRNOM and SRNOM. Stock AHA solutions were made with 33mg/L AHA and all subsequent solutions were prepped following the details in the main manuscript.

Figure S1: Excitation plots of SRNOM, NRNOM and AHA with NaCl (a-c) and Instant Ocean (df). NaCl solutions were run in a concentration range of 0.05M to 2.0M. IO solutions were made with the same weight concentration as the NaCl solutions, resulting in a concentration range of 2.9g/L to 116g/L. All excitation spectra were collected using an emission wavelength of 480nm. NRNOM solutions were run in a smaller concentration range as the SRNOM and AHA studies showed that changes to the fluorescence intensity were not dependent on NaCl or IO concentration.

Figure S2: Emission plots of SRNOM, NRNOM and AHA with NaCl (a-c) and Instant Ocean (d-f). NaCl solutions were run in a concentration range of 0.05M to 2.0M. IO solutions were made with the same weight concentration as the NaCl solutions, resulting in a concentration range of 2.9g/L to 116g/L. All emission spectra were collected using an excitation wavelength of 405nm. NRNOM solutions were run in a smaller concentration range as the SRNOM and AHA studies showed that changes to the fluorescence intensity were not dependent on NaCl or IO concentration.

Figure S3: Absorbance plots for SRNOM (a), NRNOM (b), and AHA (c) with different concentrations of MgCl₂ and IO. The inserted photos are a zoomed in section of the absorbance spectra between 350 and 500nm.

Figure S4: The relationship between pH and maximum fluorescence intensity of NRNOM, SRNOM and AHA. The pH of the NOM solutions was changed by adding 0.2M NaOH dropwise to the solutions.

Figure S5: Emission spectra of SRNOM and with a) NaHCO₃ and b) NaSO₄. All emission spectra were collected using an excitation wavelength of 405nm. The concentrations of the two solutes matched their concentrations in the IO solutions.

Figure S6: Emission spectra of SRNOM, NRNOM and AHA with Fe^{3+} . SRNOM and AHA solutions with $FeCl_3$ were made at 0.062, 0.31 and 0.62 μ M, which correspond to the 5.8, 29 and 58g/L IO solutions. Solutions at 0.5 and 1 μ M FeCl₃ were run with NRNOM as the fluorescence intensity did not show dependence on the concentration of Fe^{3+} .

Figure S7: Excitation (a-c) and emission (d-f) spectra of SRNOM, NRNOM and AHA with Mg^{2+} . All magnesium solutions were run between 7.8mM and 78.2mM, which correspond to the 5.8, 29 and 58g/L IO solutions.

Figure S8: Difference spectra of the fluorescence anisotropy of AHA measured in the presence of 100 mM NaCl minus that measured without added NaCl (a-c) and those measured in the presence and absence of added IO (d-f) minus those without added IO.

Figure S9: Plots depicting the loss of TMP, as the $ln(C \setminus C_0)$, over time for SRNOM (a), NRNOM (b), and AHA (c). The slopes of these plots were used to determine k_{eff} as a function of magnesium concentration.

Figure S10: The plots of k_f for SRNOM (a), NRNOM (b,) and AHA (c) versus the concentrations of NaCl (green circles) and IO (blue triangles).

Figure S11: Plot of k_f versus the concentration of magnesium for AHA.

	$k_{\rm f}$ (us ⁻¹)	$k_{\rm d}$ (us ⁻¹)	k_{02} (M ⁻¹ s ⁻¹)
SRNOM	1.455	0.273	1.13×10^9
0.0228M Mg ²⁺	1.285	0.281	1.01 x10 ⁹
0.1143M Mg ²⁺	1.283	0.273	1.01 x10 ⁹
0.228M Mg ²⁺	1.220	0.280	9.64 x10 ⁸
0.68M NaCl	1.095	0.270	8.51 x10 ⁸
1.9M NaCl	0.799	0.3012	6.21 x10 ⁸
0.3M IO	1.084	0.268	8.47 x10 ⁸
1.5M IO	0.913	0.260	7.14 x10 ⁸
3.0M IO	0.634	0.276	$4.95 \text{ x} 10^8$
NRNOM	1.631	0.273	1.26 x10 ⁹
0.0228M Mg ²⁺	1.627	0.263	1.25 x10 ⁹
0.1143M Mg ²⁺	1.488	0.267	1.14 x10 ⁹
0.228M Mg ²⁺	1.230	0.256	9.42 x10 ⁸
0.68M NaCl	1.180	0.245	9.13 x10 ⁸
0.3M IO	1.678	0.244	1.33 x10 ⁹
1.5M IO	1.081	0.246	8.6 x10 ⁸
3.0M IO	0.821	0.249	6.53 x10 ⁸
AHA	1.724	0.278	1.36 x10 ⁹
$0.0\overline{228M}$ Mg ²⁺	1.377	0.299	$1.06 \text{ x} 10^9$
0.1143M Mg ²⁺	1.277	0.293	9.83×10^8
$0.228M Mg^{2+}$	1.446	0.264	$1.11 \text{ x} 10^9$

0.68M NaCl	1.289	0.261	9.99 x10 ⁸
0.3M IO	1.300	0.287	$1.0 \text{ x} 10^9$
1.5M IO	1.058	0.272	8.15 x10 ⁸
3.0M IO	0.926	0.238	7.13 x10 ⁸

Table S1: k_{f} , k_d and calculated k_{O2} rate constants for all three NOM samples with Mg^{2+} , NaCl and IO.

References

- 1 R. L. Malcolm and P. MacCarthy, Limitations in the use of commercial humic acids in water and soil research, *Environ. Sci. Technol.*, 1986, **20**, 904–911.
- 2 J. I. Kim, G. Buckau, G. H. Li, H. Duschner and N. Psarros, Characterization of humic and fulvic acids from Gorleben groundwater, *Fresenius*. J. Anal. Chem., 1990, **338**, 245– 252.
- J. Hur and M. A. Schlautman, Effects of mineral surfaces on pyrene partitioning to wellcharacterized humic substances, *J. Environ. Qual.*, 2004, **33**, 1733–1742.