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19 Figure S1. Site map of the Kuparuk River on the North Slope of Alaska. Photochemical 
20 parameters were measured from water samples collected from the sampling sites1 (red circles).  
21 River discharge and channel geometry data were collected from 8 gauging stations along the 
22 Kuparuk River2 (blue crosses).
23
24 Figure S2. Summary of (A) photochemical parameters3-6 (years 2011-2013) as a function of 
25 light wavelength and (B) hydrology parameters2 (years 2013-2015) as a function of downstream 
26 distance in the Kuparuk River. Panel (A) contains spectra of photon flux at the water surface (Qλ) 
27 from 19-June-2013, a sunny (clear sky) day at Toolik Field Station in Arctic Alaska, with 
28 different colors denoting different hours within a day, ±95% confidence interval of the light 
29 attenuation coefficient of CDOM (aCDOMλ) and the photo-lability of CDOM (Φλ), and 
30 parameters αλ and ελ that relate DOC concentration to aCDOMλ. Panel (B) contains water surface 
31 slope (S), and ranges of water column depth (H), river width (W), and flow discharge (Q).
32
33 Figure S3. Spectra of light attenuation coefficient of CDOM (aCDOMλ) and photo-lability of 
34 CDOM (Φλ) for arctic streams, rivers, and lakes1, 7. Parameters aCDOMλ and Φλ exhibit an 
35 exponential relationship with wavelength, with exponential slopes of -0.005 and -0.009, 
36 respectively. These slopes are based on log10 of aCDOMλ and Φλ, which is the same as 
37 exponential slopes -0.012 and -0.021 for natural log of aCDOMλ and Φλ.
38
39 Figure S4. Water column depth (H) and water surface slope (S) as a function of flow discharge 
40 (Q) for arctic stream, rivers, and beaded streams. Data sources are summarized in Table S1. 
41 Dash-dot lines represent 95% prediction intervals of the power law relationships of H-Q and S-Q.
42
43 Figure S5. Reaction efficiency heatmap of (A) beaded streams under slow flow, (B) shallow 
44 lakes, and (C) deep lakes. Natural variations of surface Damkohler number ( ) and 𝑑 ∗
45 dimensionless light attenuation ( ) values for each type of systems are plotted in white lines.𝑝 ∗
46
47 SI-1. No mixing limitation when CDOM is the only light attenuating constituent.
48 SI-2. Compiling photochemical and hydrological data of arctic waters.
49 SI-3. Non-dimensionalization of the dispersion-reaction equation.
50 SI-4. Solving for the depth-integrated photomineralization rate.
51 SI-5. Estimating vertical dispersion profiles of arctic waters.
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53 Table S1. Data sources of photochemical and hydrological parameters in arctic stream, rivers, 
54 beaded streams, and lakes.
55 Table S2. Reported ranges (min, max) of photochemical and hydrological parameters in arctic 
56 streams and rivers (rocky bottom), beaded streams (peat bottom), and lakes.
57 Table S3. (A) Percentage of systems partially or substantially limited by mixing for each type of 
58 arctic systems that exhibit exponential light attenuation over depth. (B) Depth-integrated 
59 attenuation ratio (mean ± standard error) for each type of arctic systems that are partially or 
60 substantially limited by mixing.
61 Table S4. List of notations.
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64
65
66 Figure S1. Site map of the Kuparuk River on the North Slope of Alaska. Photochemical 
67 parameters were measured from water samples collected from the sampling sites1 (red circles).  
68 River discharge and channel geometry data were collected from 8 gauging stations along the 
69 Kuparuk River2 (blue crosses). 
70
71
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72
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73
74 Figure S2. Summary of (A) photochemical parameters3-6 (years 2011-2013) as a function of 
75 light wavelength and (B) hydrology parameters2 (years 2013-2015) as a function of downstream 
76 distance in the Kuparuk River. Panel (A) contains spectra of photon flux at the water surface (Qλ) 
77 from 19-June-2013, a sunny (clear sky) day at Toolik Field Station in Arctic Alaska, with 
78 different colors denoting different hours within a day, ±95% confidence interval of the light 
79 attenuation coefficient of CDOM (aCDOMλ) and the photo-lability of CDOM (Φλ), and 
80 parameters αλ and ελ that relate DOC concentration to aCDOMλ. Panel (B) contains water surface 
81 slope (S), and ranges of water column depth (H), river width (W), and flow discharge (Q).
82
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84
85
86 Figure S3. Spectra of light attenuation coefficient of CDOM (aCDOMλ) and photo-lability of 
87 CDOM (Φλ) for arctic streams, rivers, and lakes1, 7. Parameters aCDOMλ and Φλ exhibit an 
88 exponential relationship with wavelength, with decadic slopes of -0.005 and -0.009, respectively. 
89 These slopes are based on log10 of aCDOMλ and Φλ, which is the same as exponential slopes -
90 0.012 and -0.021 for natural log of aCDOMλ and Φλ.
91
92
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93
94
95 Figure S4. Water column depth (H) and water surface slope (S) as a function of flow discharge 
96 (Q) for arctic stream, rivers, and beaded streams. Data sources are summarized in Table S1. 
97 Dash-dot lines represent 95% prediction intervals of the power law relationships of H-Q and S-Q.
98
99
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100
101 Figure S5. Reaction efficiency heatmap of (A) beaded streams under slow flow, (B) shallow 
102 lakes, and (C) deep lakes. Natural variations of surface Damkohler number ( ) and 𝑑 ∗

103 dimensionless light attenuation ( ) values for each type of systems are plotted in white lines.𝑝 ∗

104
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106 SI-1. No mixing limitation when CDOM is the only light attenuating constituent.
107 When CDOM is the only light attenuating constituent, light does not necessarily decay 
108 exponentially with depth, especially when CDOM is nonhomogeneously distributed. At each 
109 vertical position (y) in the water column, photon flux ( ) depends on the total amount of 𝑄𝜆(𝑦)
110 CDOM above that position8. 
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112 where Qdso-λ is the photon flux at the water surface,  is the light attenuation 𝑎𝐶𝐷𝑂𝑀𝜆(𝑦)

113 coefficient of CDOM, and  is wavelength. The photomineralization rate profile ( ) is the 𝜆 𝑃𝑀(𝑦)

114 product of the photo-lability of CDOM to photomineralization ( ), the light attenuation Φ𝜆

115 coefficient of CDOM, and the photon flux1.
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117 Using integration by parts and calculus theorem, the total attenuation of light across the 
118 water column ( ) can be derived asΔ𝑄𝜆
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120 where the exponential term on the right-hand side of (S3) is a function of the total CDOM 
121 amount in the water column, so the total attenuation of light across the water column is the same 
122 regardless of the distribution of CDOM. Similarly, the upscaled photomineralization rate over 
123 the water column can be derived as
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125 which is independent of the distribution of CDOM. Therefore, in arctic waters where CDOM is 
126 the only constituent that attenuates light, upscaled phtomineralization rate over the water column 
127 is not limited by vertical hydrodynamic mixing.
128
129 SI-2. Compiling photochemical and hydrological data of arctic waters.
130 Spectra of light attenuation coefficient of CDOM (aCDOMλ) and photo-lability of 
131 CDOM (Φλ) are available from over 1000 samples for arctic streams and rivers and over 2000 
132 samples for arctic lakes1, 7. These spectra show exponential relationships with wavelength 
133 (Figure S3), although aCDOMλ and Φλ were usually reported as single values at specific 
134 wavelengths in many other studies. In latter cases, full spectra were extrapolated by assuming the 
135 same decadic slopes (-0.005 for aCDOMλ and -0.009 for Φλ) with wavelength as the available 
136 spectra (Figure S3). Note that these slopes are based on log10 of aCDOMλ and Φλ, which is the 
137 same as exponential slopes -0.012 and -0.021 for commonly reported natural log of aCDOMλ 
138 and Φλ 9. We also assumed that, within each type of system, high DOC concentration 
139 corresponds to high aCDOMλ and low DOC concentration corresponds to low aCDOMλ, due to 
140 the fact that DOC concentration and aCDOMλ were usually not reported together. 
141 In streams and rivers, water surface slope (S) and water column depth (H) are expected to 
142 co-vary, and both are a function of flow discharge (Q), although from the literature S, H, and Q 
143 were usually not reported together. In order to predict S and H from reported values while 
144 capturing their covariation, we plotted S-Q and H-Q relationships based on data when S-Q or H-
145 Q were reported together (Figure S4). For streams and rivers, both S and H exhibit power law 
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146 relationships with discharge,  and . For 10 10log 0.25log 0.46H Q  10 10log 0.12log 2.55S Q  
147 streams and rivers, S and H can therefore be predicted by the power laws and corresponding 
148 prediction intervals, when at least one of S, H, or Q were reported. In beaded streams, existing S-
149 Q data do not show a clear relationship (Figure S4), and pool structure is expected to behave 
150 differently than common streams, so we assumed that ranges of H and S for beaded streams do 
151 not co-vary with Q. 
152
153 SI-3. Non-dimensionalization of the dispersion-reaction equation.
154 The original dispersion-reaction equation is
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156 with non-flux boundary conditions
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159 where  is DOC concentration, t is time, y is the vertical position that is 0 at water surface 𝐶(𝑦,𝑡)
160 and positive in the downward direction, and  is the y-dependent vertical dispersion 𝐷(𝑦)
161 coefficient that dictates vertical mixing and sets the rate of resupply of CDOM from bottom 
162 waters to the surface,  is the photo-lability of CDOM, Qdso-λ is the photon flux at the water Φ𝜆

163 surface,  is the light attenuation coefficient of CDOM, and  is the total light 𝑎𝐶𝐷𝑂𝑀𝜆(𝑦,𝑡) 𝐾𝑑𝜆(𝑦)
164 attenuation coefficient. Notations in this study are summarized in Table S3.
165 The dimensional variables contained in (S5) are C, t, and y. Thus, the dimensions to be 
166 normalized are concentration, time, and length. We define the following scales to normalize 
167 dimensional variables into dimensionless ones.
168 (S7a)*y Hy
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171 where superscript * indicates dimensionless quantities,  denotes empirical parameter  at 𝜀280 𝜀𝜆

172 wavelength 280 nm, and  is the depth-averaged vertical dispersion coefficient. Wavelength 〈𝐷〉

173 280 nm was picked because it is the high end of the spectra such that  is always non-zero. 𝜀280

174 Plug (S7) into (S5)-(S6), (S5)-(S6) become
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176 with non-flux boundary conditions
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179 (S8) can be rewritten as
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181 where  and  are wavelength-specific dimensionless parameters defined by 𝑑 ∗
𝜆 𝑝 ∗

𝜆

182  (S11a) 
 

* *2
*

* *

,

, dso

aCDOM y tHd Q
D C y t


   

183  (S11b) * *
dp K y H 

184
185 SI-4. Solving for the depth-integrated photomineralization rate.
186 The generalized dispersion-reaction equation is:
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188 with non-flux boundary condition (S9), where  is surface Damkohler number, and  is 𝑑 ∗ 𝑝 ∗

189 dimensionless light attenuation. The moment method10 solves for the dimensionless depth-
190 integrated photomineralization rate, r*, as well as the vertical distribution of DOC concentration, 
191 at asymptotic regime. At the asymptotic regime, the dimensionless depth-averaged DOC 
192 concentration decays at a first-order rate constant r* over time10

193 (S13)
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194 The moment method defines a representative unit cell, where the vertical water column is 
195 mirrored, such that reaction and dispersion profiles are symmetric about . The governing 𝑦 ∗ = 0
196 equation within a unit cell becomes:

197 (S14)
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198 with periodic boundary conditions:
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201 At asymptotic regime, DOC concentration has been fully developed in the unit cell, such that 
202 solute concentration is symmetric about . Therefore, non-flux boundary condition (S9) 𝑦 ∗ = 0
203 applies in vertical water column. 



S13

204 The asymptotic regime solution  is given by the smallest eigenvalue of the following 𝑟 ∗

205 eigenvalue problem10, 11
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207 with periodic boundary conditions:
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210 where  is the eigenfunction and  is the eigenvector. The eigenvector that corresponds to 𝐸(𝑦 ∗ ) Λ
211 the smallest eigenvalue is the vertical distribution of DOC concentration at asymptotic regime.
212 We used finite difference method to solve the eigenvalue problem (S16)-(S17). We 
213 discretized the vertical water column into  layers ( ). The unit cell is therefore 𝑛 + 1 𝑛 = 1024

214 discretized into  layers, each with thickness . For each layer  (2𝑛 + 2
ℎ =

1
𝑛 + 1 𝑖

215 ) within the unit cell, denote  such that  and . 𝑖 = 0, 1, …, 2𝑛 + 1 𝑦 ∗
𝑖 ≡ ‒ 1 + ℎ𝑖 𝑦 ∗

0 =‒ 1 𝑦 ∗
𝑛 + 1 = 0

216 Denote  and , (S12) becomes𝐷 ∗
𝑖 ≡ 𝐷 ∗ (𝑦 ∗

𝑖 ) 𝐸𝑖 ≡ 𝐸(𝑦 ∗
𝑖 )
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218 Define
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222
223 (S18) becomes
224 (S20)1 1i i i i i i iE E E E      
225
226 With periodic boundary conditions (S17) applied, (S20) can be written as
227
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229
230 To this point, the smallest eigenvalue and the corresponding eigenvector can be solved. 
231
232 SI-5. Estimating vertical dispersion profiles of arctic waters.
233 In the Kuparuk River, the vertical dispersion coefficient  follows a standard model12, 𝐷(𝑦)
234 13:

235  (S22)*( ) (1 )yD y u y
H

 

236 where κ is the von Karman constant,  is the shear velocity [m s-1], and H is the water column 𝑢 ∗

237 depth [m]. Because the observed river channel width is always at least 10 times larger than the 
238 observed river depth, turbulent properties are independent of river width12. Therefore, we 
239 approximate the shear velocity by *u gHS , where g is gravitational acceleration [m s-2] and S 
240 is the water surface slope. The depth-averaged vertical dispersion coefficient therefore is

241  (S23) *
*6

D y u H


242 We assume arctic streams and rivers to follow the same vertical dispersion profile as 
243 equation (S22). Arctic lakes and beaded stream pools usually have more complicated dispersion 
244 profiles. We assume two scenarios to capture the natural ranges of vertical mixing in beaded 
245 stream pools: the vertical dispersion profile in equation (S22) at fast flow, and a layered 
246 dispersion profile at slow flow. In the latter case, we assume that the top 10% of the pool depth 
247 mixes rapidly at the mean dispersion value of the fast flow scenario, while the deep layer of the 
248 pool mixes 2 orders of magnitude slower, a typical ratio for lakes worldwide14-16. 
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250 In arctic lakes, because the epilimnion (or the surface layer) usually defines a turbulent mixing 
251 layer that has much higher vertical dispersion than the deep layer, we define two scenarios of 
252 vertical dispersion: deep lakes that are deeper than the mean epilimnion depth in arctic lakes, and 
253 shallow lakes that are shallower than the mean epilimnion depth. Water transparency and mixing 
254 depth often relates to each other, because rapid absorption of light at the surface often creates a 
255 "trapping depth" defined by a high density gradient17. A strong relationship between 
256 transparency and mixing depth was found in a variety of lakes, including those larger than Toolik 
257 Lake (1.5 km2 fetch) and those that are sheltered from the wind (crater lakes)18. Even in sheltered 
258 lakes where diurnal thermoclines are more common during solar heating and calm conditions, 
259 the longer-term, average mixing depth is still related strongly to the optical properties of the 
260 water18-20. Secchi depth, which characterizes the optical property of the water column, strongly 
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261 affects epilimnion depth in relatively small temperate lakes (defined as fetch < 500 ha in 20), and 
262 becomes less effective in predicting epilimnion depth of large temperate lakes (defined as fetch > 
263 500 ha in 20). However, very large lakes in the Arctic are rare compared to temperate lakes, and 
264 studies typically report a much smaller range of fetch (0.003-1.5 km2, which is 0.3-150 ha, based 
265 on 7 studies of 51 arctic lake)21-27. Further, given that arctic waters are typically light limited and 
266 have high CDOM, even if mixing is confined to a near-surface layer, the amount CDOM is 
267 difficult to consume in short periods of time (days to weeks), and CDOM would be resupplied 
268 from greater depths as soon as a diurnal thermocline is erased, for example by wind mixing or 
269 convective mixing at night28. Therefore, Secchi depth was chosen to estimate epilimnion depth. 
270 We estimate the mean epilimnion depth in arctic lakes using an empirical relationship with 
271 Secchi depth reported for temperate-zone lakes19, assuming that arctic lakes behave similarly to 
272 temperate-zone lakes
273  (S25)3.24 0.35d dE S 
274 where  is the mean epilimnion depth (4.3 m) and  is the mean Secchi depth reported in arctic 𝐸̅𝑑 𝑆̅𝑑

275 lakes. In shallow lakes, we treat the entire water column as the surface layer where vertical 
276 dispersion is uniform over depth and spans the range 10-5–10-2 m2 s-1. In deep lakes, we assumed 
277 that deep-layer dispersion is 2 orders of magnitude lower than surface layer dispersion, which is 
278 representative of reported ranges for lakes and oceans14-16. For each deep lake, given that Secchi 
279 depth and lake depth are usually not reported together (Table S1), we assumed that the 
280 epilimnion depth (or the surface layer thickness)  can be estimated by𝐸𝑑

281  (S26)d
d

DL

EE H
H



282 where  is the mean depth of deep arctic lakes (12.5 m). (S26) only serves as a rough estimate 𝐻̅𝐷𝐿

283 of  for each deep lake system. 𝐸𝑑

284
285
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286 Table S1. Data sources of photochemical and hydrological parameters in arctic stream, rivers, 
287 beaded streams, and lakes.
288

 DOC aCDOMλ Φλ Q H S SD
rivers 1, 7, 29-32 1, 7, 32 1, 7 2, 32-35 2, 35 2, 33, 34 -

streams 1, 7, 29-31, 36, 37 1, 7, 38 1, 7
2, 33, 35, 36, 39, 

40
2, 35 2, 33, 34, 39, 40 -

beaded streams 1, 29-31, 41-44 38, 41, 43 1, 41, 42 33, 38-40, 43-47 38, 44-47
33, 39, 40, 45, 

47 -

lakes
7, 21, 26, 31, 37, 48-

52
1, 7 1, 7 -

21-27, 48, 49, 

53 - 31, 54-58

289
290 * From left to right, DOC, aCDOMλ, Φλ, Q, H, S, and SD denote DOC concentration, light attenuation 
291 coefficient of CDOM, photo-lability of CDOM, flow discharge, water column depth, water surface slope, 
292 and Secchi depth respectively. The reference numbers correspond to the references in SI.
293
294
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295 Table S2. Reported ranges (min, max) of photochemical and hydrological parameters in arctic 
296 streams and rivers (rocky bottom), beaded streams (peat bottom), and lakes.
297

 DOC (mol 
m-3)

aCDOM300 
(m-1)

Φ300 (mol CO2 
mol-1 photon) H (m) S (-) SD (m)

rivers 0.028, 18 3.6, 103 4×10-4, 0.08 0.14, 15.5 5×10-5, 0.03 -
streams 0.028, 18 4.6, 334 5×10-4, 0.04 0.015, 2.1 1.7×10-4, 0.1 -
beaded streams 0.12, 3.1 33, 359 0.003, 0.04 0.12, 3.0 3×10-4, 0.009 -
lakes  0.008, 2.7 4.3, 79  4×10-4, 0.08 0.08, 43  -  0.3, 11.2

298
299 * Nomenclatures same as Table S1. Light attenuation coefficient of CDOM (aCDOMλ) and photo-lability 
300 of CDOM (Φλ) are adjusted to wavelength = 300 nm.
301
302
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303 Table S3. (A) Percentage of systems partially or substantially limited by mixing for each type of 
304 arctic systems that exhibit exponential light attenuation over depth. (B) Depth-integrated 
305 attenuation ratio (mean ± standard error) for each type of arctic systems that are partially or 
306 substantially limited by mixing.
307
308 (A)Percentage within each type of arctic systems

partially limited substantially limited
streams and rivers 0% 0%

beaded streams 0.1% 0%
lakes 12% 30%

309
310 (B) Depth-integrated attenuation ratio

partially limited substantially limited
streams and rivers --- ---

beaded streams 0.92±0.001 ---
lakes 0.95±0.001 0.58±0.002

311
312
313
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314 Table S4. List of notations.
315
316 English letters

 [m-1]𝑎𝐶𝐷𝑂𝑀𝜆 light attenuation coefficient of CDOM

 [m-1]𝑎𝑆𝑆𝜆 light attenuation coefficient of suspended sediment (SS)
C [mol m-3] DOC concentration
D [m2 s-1] vertical dispersion coefficient

 𝑑 ∗ surface Damkohler number
E eigenfunction

 [m]𝐸𝑑 epilimnion depth
g [m s-2] gravitational acceleration
H [m] water column depth

 [m]𝐻̅𝐷𝐿 mean depth of deep arctic lakes
Kdλ [m-1] total light attenuation coefficient

 𝑝 ∗ dimensionless light attenuation
 𝑃𝑒 statistical equilibrium of the vertical distribution of DOC

PM [mol m-3 s-1] DOC photo-mineralization rate
 [m-3 s-1]𝑄 discharge

 [mol m-2 s-1]𝑄𝑑𝑠𝑜 ‒ 𝜆 photon flux at the water surface

 [mol m-2 s-1]𝑄𝜆 photon flux
 [s-1]𝑟 depth-integrated photomineralization rate

 [s-1]𝑟𝑤𝑚
depth-integrated photomineralization rate under well-mixed 
assumption

S water surface slope
Sd [m] Secchi depth
t [s] time

 [m s-1]𝑢 ∗ shear velocity
 [m]𝑊 river width

y [m] vertical position in the water column
317
318 Greek letters

 [m-1]𝛼𝜆

 [m2 mol-1]𝜀𝜆
 

0
0 0

C if C
aCDOM

if C
   


 

   
 

  
   

 𝜂𝑟𝑒𝑎𝑐𝑡 reaction efficiency
 𝜅 von Karman constant

Λ eigenvector
λ [m] wavelength

 [mol CO2 mol-1 photon]𝜙𝜆
photo-lability of CDOM to photomineralization, also known as 
the apparent quantum yield for photomineralization

319
320 Others

superscript * dimensionless variable or parameter
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 〈〉 depth-averaged value

 
̅ mean value

321
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