Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2018

1	Supplementary information
2	Combined effects of dissolved organic matter, pH, ionic strength and halides on
3	photodegradation of oxytetracycline in simulated estuarine waters
4	Ya-nan Zhang ^a , Jianchen Zhao ^a , Yangjian Zhou ^a , Jiao Qu ^{*a} , Jingwen Chen ^b , Chao Li ^a ,
5	Weichao Qin ^a , Yahui Zhao ^a , Willie J.G.M. Peijnenburg ^{c,d}
6	^a School of Environment, Northeast Normal University, Changchun 130117, China
7	^b Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),
8	School of Environmental Science and Technology, Dalian University of Technology,
9	Dalian 116024, China
10	^c Institute of Environmental Sciences (CML), Leiden University, Leiden, The
11	Netherlands
12	^d National Institute of Public Health and the Environment (RIVM), Center for Safety
13	of Substances and Products, Bilthoven, The Netherlands
14	*Corresponding author. Phone: +86-431-89165617; e-mail: quj100@nenu.edu.cn
15	
16	Number of texts: 1; Number of figures: 6; Number of tables: 3; Number of pages: 9
17 18	Table of Contents
19	Text S1
20	Figure S1S3
21	Figure S2S3
22	Figure S3S4
23	Figure S4S4
24	Figure S5S5
25	Figure S6S5
26	Table S1S6
27	Table S2S7
28	Table S3S8
29	References
30	

Text S1. Calculation of photolysis rate constant and molar absorptivity for different species of OTC.

OTC photolysis followed pseudo-first order kinetics. The apparent degradation rate
 contributes by each component in the system:

35
$$-\frac{\mathrm{d}c}{\mathrm{d}t} = k_{\mathrm{obs}} \cdot c = k_1 \cdot c_1 + k_2 \cdot c_2 + \dots + k_i \cdot c_i \tag{1}$$

where *c* is the concentration of different species, k_{obs} (min⁻¹) is the observed first order rate constant of OTC in different pH solutions, k_i (min⁻¹) is the first order rate constant of each individual species. The equation can be changed to:

39
$$k_{\text{obs}} = \alpha_1 \cdot k_1 + \alpha_2 \cdot k_2 + \dots + \alpha_i \cdot k_i$$
(2)

40 where α_i is the fraction of each species at different pH and at different time during the 41 irradiation. The α_i values can be calculated with the pKa (3.22, 7.46, and 8.94) of 42 OTC as the time tends to be zero at the initial time.

43 Set *A*, K_{obs} , K_i as the matrix of $\alpha_1 \sim \alpha_{ij}$, $k_{obs}^{\ 1} \sim k_{obs}^{\ j}$, and $k^1 \sim k^i$. *i* represents the total 44 number of species (4 in this study). *j* represents the total pH conditions (6 in this 45 study). The independent rate constant of each species was then derived with:

46 $K_{i} = (A^{-1} \cdot A)^{\mathrm{T}} \cdot A^{-1} \cdot K_{\mathrm{obs}}$ (3)

47 While calculating the molar absorptivity for different species of OTC, K_{obs} and K_i 48 were replaced by E_j and E_i , which are the matrix of molar absorptivity for OTC at 49 different pH and for each species of OTC, respectively.

The quantum yield of each OTC species was calculated from the individual rate
constant and the molar absorption coefficient with the following equation:¹

52
$$\Phi = \frac{-k_i}{2.303\Sigma(I_\lambda \cdot \varepsilon_\lambda)(S/V)l}$$
(4)

53 Where I_{λ} is the incident light intensity at wavelength λ (Einstein cm⁻² s⁻¹); ε_{λ} is the 54 molar absorption coefficient of OTC (cm⁻¹ L mol⁻¹); *S* is the exposed area (cm²); *V* 55 is the volume of solution (mL); *l* is the light path length (cm).

57

58

59

Fig. S2 The 1000 W Xe lamp and sunlight irradiation spectra (The sunlight irradiation

62 spectrum was measured at midsummer in Dalian, China (38 53'29.9"N and

121 °32′4.1″E)).

64

Fig. S3 Direct photolysis kinetics of OTC at different pH.

Fig. S4 Observed first-order photolysis rate constants (k_{obs}) OTC in different conditions (* stands for significant difference, p < 0.05, n = 3; the error bars represent the 95% confidence interval, n = 3).

pН	$H3L^+$	H2L	HL	L ²⁻
2.0	0.943	0.057	0.000	0.000
3.2	0.511	0.489	0.000	0.000
5.0	0.016	0.980	0.004	0.000
6.0	0.002	0.965	0.033	0.000
7.0	0.000	0.740	0.257	0.003
8.0	0.000	0.205	0.713	0.082
9.0	0.000	0.013	0.459	0.528
12.0	0.000	0.000	0.001	0.999
*				

Table S1 Fractions of $H3L^+$, H2L, HL^- , and L^{2-} in different pH solutions.

81

^{*}The fractions were calculated with pKa of 3.22, 7.46, and 8.94 for OTC

рН	k _{obs} –	With 5 mg L^{-1} SRNOM			With 10 mg L ⁻¹ SRNOM				
		$k_{ m obs}$	S ₂₉₀₋₄₅₅	$k_{ m ind}$	$P_{\rm ind}$ %	$k_{ m obs}$	S ₂₉₀₋₄₅₅	$k_{ m ind}$	$P_{\rm ind}$ %
2.0	0.239 ± 0.007	0.233 ± 0.003	0.737	0.056 ± 0.005	24.2	0.146 ± 0.006	0.703	-0.022 ± 0.006	-15.2
3.2	0.378 ± 0.012	$0.311\ \pm 0.006$	0.716	0.040 ± 0.009	13.0	0.275 ± 0.010	0.682	0.017 ± 0.007	6.2
5.0	0.486 ± 0.013	$0.414\ \pm 0.005$	0.708	0.070 ± 0.009	16.9	$0.405 \ \pm 0.010$	0.671	0.079 ± 0.008	19.5
7.0	0.963 ± 0.014	0.911 ± 0.03	0.721	0.216 ± 0.007	23.7	0.787 ± 0.026	0.693	0.120 ± 0.007	15.2
8.0	1.520 ± 0.021	$1.433\ {\pm}0.025$	0.729	0.325 ± 0.008	22.7	1.340 ± 0.050	0.704	0.270 ± 0.007	20.2
9.0	3.425 ± 0.054	3.167 ± 0.067	0.716	0.714 ± 0.009	22.5	3.054 ± 0.040	0.695	0.674 ± 0.007	22.1
12.0	5.572 ± 0.078	5.027 ± 0.110	0.703	1.112 ± 0.007	22.1	5.011 ± 0.110	0.668	1.287 ± 0.007	25.7

Table S2 Observed first-order photolysis rate constants (k_{obs}) of OTC in the absence and presence of SRNOM, integrated light screening coefficient ($S_{290-455}$) of SRNOM, SRNOM induced indirect photolysis rate constants (k_{ind}) of OTC in different pH solutions, and the percentage of k_{ind} (P_{ind}) (The unit for k_{obs} and k_{ind} is $\times 10^{-2}$ min⁻¹)

*The errors of k_{obs} and k_{ind} represent 95% confidence levels, n = 3.

Conditions		рН				
Condition	18	6.0	7.0	8.0	9.0	
No SO	OTC	$0.849\ \pm 0.041$	0.963 ± 0.006	$1.520\ {\pm}0.001$	3.425 ± 0.079	
Na_2SO_4	OTC + SRNOM	0.648 ± 0.013	$0.787\ {\pm}0.006$	1.340 ± 0.018	3.054 ± 0.097	
NaCl	OTC	$0.864\ \pm 0.018$	$0.971\ {\pm}\ 0.015$	1.526 ± 0.011	3.568 ± 0.013	
$0.075 \text{ mol } \text{L}^{-1}$	OTC + SRNOM	0.666 ± 0.012	$0.914\ {\pm}\ 0.025$	1.441 ± 0.015	3.173 ± 0.068	
NaBr	OTC	0.900 ± 0.018	1.025 ± 0.006	1.548 ± 0.007	3.820 ± 0.096	
$0.075 \text{ mol } \text{L}^{-1}$	OTC + SRNOM	0.711 ± 0.010	1.031 ± 0.025	1.506 ± 0.044	3.516 ± 0.035	
NaBr (0.80 mmol L ⁻¹) +	OTC	0.852 ± 0.021	$0.965\ {\pm}0.016$	1.535 ± 0.015	3.597 ± 0.042	
Na_2SO_4	OTC + SRNOM	0.651 ± 0.012	0.795 ± 0.010	1.402 ± 0.024	3.195 ± 0.114	
NaCl (0.075 mol L ⁻¹) +	OTC	$0.858\ {\pm}\ 0.015$	0.964 ± 0.012	1.515 ± 0.014	3.562 ± 0.019	
NaBr (0.80 mmol L^{-1})	OTC + SRNOM	0.694 ± 0.013	1.013 ± 0.025	1.501 ± 0.015	3.453 ± 0.058	

Table S3 Observed first-order photolysis rate constants (k_{obs}) of OTC in the absence and presence of SRNOM in Na₂SO₄, NaCl, and NaBr solutions with the same ionic strength at different pH (The unit for k_{obs} is $\times 10^{-2}$ min⁻¹).

*The errors of k_{obs} represent 95% confidence levels, n = 3.

References

 X. Jin, H. Xu, S. Qiu, M. Jia, F. Wang, A. Zhang and X. Jiang, Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature, J. *Photochem. Photobiol. A– Chem.*, 2017, **332**, 224–231.