Supplementary Information for:

Updated and validated solar irradiance reference spectra for estimating environmental photodegradation rates

Jennifer N. Apell and Kristopher McNeill

Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland. kris.mcneill@env.ethz.ch jennifer.apell@usys.ethz.ch

Table S1. Input parameters for SMARTS for NREL data comparison	2
Table S2. Input parameters for SMARTS for NOAA data comparison	2
Table S3. Input parameters for SMARTS for NSF data comparison	2
Table S4. Ozone concentrations used in reference spectra calculations	3
Figure S1. Ozone concentrations for 2010-2017 at $\overline{0^{\circ}}$ latitude	3
Figure S2. Ozone concentrations for 2010-2017 at 10°N and 10°S latitude	4
Figure S3. Ozone concentrations for 2010-2017 at 20° N and 20°S latitude	5
Figure S4. Ozone concentrations for 2010-2017 at 30° N and 30°S latitude	6
Figure S5. Ozone concentrations for 2010-2017 at 40° N and 40°S latitude	7
Figure S6. Ozone concentrations for 2010-2017 at 50° N and 50°S latitude	8
Figure S7. Ozone concentrations for 2010-2017 at 60° N and 60°S latitude	9
Figure S8. Ozone concentrations for 2010-2017 at 70° N and 70°S latitude	10
Figure S9. UVA irradiances from the NOAA spectroradiometer in November 2016	11
Figure S10. Comparison of SMARTS and NSF irradiance data after ozone correction	11
Figure S11. Comparison of spectral irradiances from SMARTS and TUV models	12
Table S5. Comparison of broadband irradiances from SMARTS and TUV models	12
Figure S11. Impact of aerosol selections in SMARTS on irradiance	13
Figure S12. Impact of gaseous absorption selections in SMARTS on irradiance	14
Table S6. Gaseous species concentrations in SMARTS pre-loaded pollution levels	15
Figure S13. Impact of water vapor and altitude selections in SMARTS on irradiance	16

Atmosphere	Ozone (DU)	AOD
		(500 nm)
midlatitude winter	306	0.030445 ^a
midlatitude winter	306	0.030415
midlatitude summer	352	0.087332
midlatitude summer	335	0.051282
midlatitude summer	295	0.044586
midlatitude summer	336	0.044069
midlatitude summer	294	0.138128
midlatitude winter	267	0.07019
midlatitude winter	274	0.021974
midlatitude winter	292	0.039633
	Atmosphere midlatitude winter midlatitude winter midlatitude summer midlatitude summer midlatitude summer midlatitude summer midlatitude summer midlatitude winter midlatitude winter	AtmosphereOzone (DU)midlatitude winter306midlatitude winter306midlatitude summer352midlatitude summer335midlatitude summer295midlatitude summer336midlatitude summer294midlatitude winter267midlatitude winter274midlatitude winter292

Table S1. Values used for input parameters of SMARTS for comparison to NREL data

^adata unavailable from 1/19/2014, so measurement from 1/18/2014 used

Table S2.	Values used	for input	parameters	of SM	IARTS	for co	mparison	to NOA	AA data
r		1	1				1		

Date	Atmosphere	Ozone (DU)	AOD	
			(500 nm)	
January 10, 2016	midlatitude winter	350	0.050616	
February 25, 2016	midlatitude winter	348	0.049503	
March 20, 2016	midlatitude summer	329	0.04065	
April 21, 2016	midlatitude summer	335	0.065887	
May 4, 2016	midlatitude summer	329	0.056307	
June 17, 2016	midlatitude summer	300	0.137968	
June 18, 2016	midlatitude summer	273	0.166628	
July 27, 2016	midlatitude summer	286	0.137435	
August 20, 2016	midlatitude summer	294	0.084295	
September 25, 2016	midlatitude winter	274	0.034618	
October 20, 2016	midlatitude winter	279	0.029616	
November 18, 2016	midlatitude winter	258	0.039043	
December 10, 2016	midlatitude winter	285	0.006866	

Table S3.	Values us	sed for in	put	parameters	of SM	ARTS	for	com	parison	to	NSF	data
-----------	-----------	------------	-----	------------	-------	------	-----	-----	---------	----	-----	------

Site	Date	Atmosphere	Ozone	AOD
			(DU)	(500 nm)
Ushuaia, Argentina	December 28, 2007	subarctic summer	293	0.025
Barrow, AK, USA	June 25, 2016	arctic summer	342	0.03 ^a

^adata unavailable for 6/25/2016, used representative value for a clear sky day

all longitudes, 1 le	un fongitudes, i iguies 65 610)							
Latitude/Time	March	June	September	December				
0°	255	255	270	245				
10°N	255	270	270	245				
10°S	255	255	270	255				
20°N	270	285	270	250				
20°S	255	255	280	270				
30°N	300	300	275	270				
30°S	265	280	300	280				
40°N	345	320	280	310				
40°S	270	310	335	290				
50°N	390	345	305	350				
50°S	280	315	355	310				
60°N	400	355	305	370				
60°S	290	300	320	320				
70°N	420	335	300	NA				
70°S	290	NA	220	295				

Table S4. Ozone concentrations used (Dobson units) for the calculation of reference spectra. These values were obtained by looking at the measurements for the last 8 years (averaged over all longitudes, Figures S3-S10)

Time Series, Area-Averaged of Ozone Total Column (TOMS-like) daily 0.25 deg. [OMI OMTO3e v003] DU over 2010-01-30 - 2017-12-31, Region 180W, 0.1S, 180E, 0.1N

Figure S1. Ozone concentrations for 2010-2017 at 0°, averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Figure S2. Ozone concentrations for 2010-2017 at 10°N (top) and 10°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Time Series, Area-Averaged of Ozone Total Column (TOMS-like) daily 0.25 deg. [OMI OMTO3e v003] DU over 2010-01-30 - 2017-12-31, Region 180W, 19.9N,

Figure S3. Ozone concentrations for 2010-2017 at 20°N (top) and 20°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Figure S4. Ozone concentrations for 2010-2017 at 30°N (top) and 30°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Figure S5. Ozone concentrations for 2010-2017 at 40°N (top) and 40°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Time Series, Area-Averaged of Ozone Total Column (TOMS-like) daily 0.25 deg. [OMI OMTO3e v003] DU over 2010-01-30 - 2017-12-31, Region 180W, 49.9N, 180E. 50.1N

Figure S6. Ozone concentrations for 2010-2017 at 50°N (top) and 50°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Figure S7. Ozone concentrations for 2010-2017 at 60°N (top) and 60°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

Figure S8. Ozone concentrations for 2010-2017 at 70°N (top) and 70°S (bottom), averaged over all longitudes. The vertical lines represent the approximate time for the reference spectra (March 20=green, June 21=red, September 22=purple, December 22=blue). Data was downloaded from giovanni.gsfc.nasa.gov.

NOAA November 2016

Figure S9. Total UVA irradiance measurements (315-400 nm) from the NOAA spectroradiometer (Boulder, CO) for November 2016

Figure S10. Comparison of clear sky summertime solar irradiance data measured by the NSF facilities in Barrow (Utqiaġvik), AK, USA (green, 71.3°N, June 2016) and Ushuaia, Argentina (purple, 54.8°S, December 2007) after adjusting the ozone concentrations from 293 to 278 DU for Ushuaia and from 342 to 332 DU for Barrow.

Figure S11. Comparison of the noontime spectral irradiances modeled by the TUV Radiation Model and SMARTS. Values above one indicate that TUV modeled higher irradiance. The conditions used to calculate spectra are indicated in the legend (i.e., NREL-Mar means the atmospheric conditions at the NREL site in March were used).

Table S5. Comparison of noontime irradiances modeled by the TUV calculator and SMARTS in the UVB, UVA, and PAR regions (in W m⁻²). Values greater than 100% indicate that the TUV calculator resulted in higher irradiances.

	TUV/SMARTS						
Site:	NREL						
Month:	March	June	Sept	Dec			
UVB	104.6%	103.5%	103.6%	106.1%			
UVA	101.9%	101.7%	101.5%	101.2%			
PAR	101.6%	101.7%	101.9%	102.0%			
Site:		NOAA					
Month:	March	June	Sept	Dec			
UVB	104.5%	104.5%	103.4%	101.1%			
UVA	101.6%	102.0%	101.4%	98.7%			
PAR	101.7%	101.9%	101.9%	101.8%			
Site:	NSF BAR	NSF USH					
Month:	June	Dec					
UVB	99.8%	100.5%					
UVA	97.8%	99.2%					
PAR	102.1%	101.8%					

Figure S12. Sensitivity analysis for aerosol inputs in SMARTS. The top panel shows the influence of changing the aerosol optical depth from 0.005 to 1.0 from the baseline used in the reference spectra (0.1 aerosol optical depth, Shettle and Fenn rural aerosol model). The bottom panel shows the influence of changing the aerosol model from the baseline used in the reference spectra (0.1 aerosol optical depth, Shettle and Fenn rural aerosol model).

Figure S13. Sensitivity analysis for trace gaseous species concentrations in SMARTS. The top panel shows the influence of changing the ozone concentration from 250 to 450 DU where the value of 1 represents the global average of 300 DU. The middle panel shows the influence of the gaseous absorption pollution level selection where the value of 1 represents the "light pollution" setting which was used in the reference spectra. The bottom panel shows the influence of different gaseous species when changing the concentration from the "pristine" atmosphere to the "severe pollution" atmosphere individually.

Table S6. Gaseous concentrations (ppmv) in SMARTS pre-loaded gaseous absorption selections. These values represent an addition or subtraction of concentrations from the gaseous concentrations stored in the standard atmosphere data.

Gas	Pristine	Light Pollution	Moderate	Severe Pollution
	Atmosphere	-	Pollution	
CH ₂ O	-0.003	0.001	0.007	0.01
CH ₄	0	0.2	0.3	0.4
CO	-0.1	0	0.35	9.9
HNO ₂	-9.9E-4	0.0005	0.002	0.01
HNO ₃	0	0.001	0.005	0.012
NO	0	0.075	0.2	0.5
NO ₂	0	0.005	0.02	0.2
NO ₃	-4.9E-4	1E-5	5E-5	2E-4
O ₃	-0.007	0.023	0.053	0.175
SO ₂	0	0.01	0.05	0.2

Figure S14. Sensitivity analysis for water vapor, altitude, and albedo in SMARTS. The top panel shows the influence of water vapor concentrations as they are lowered from the value of 4.11 cm of precipitable water (default value for tropical summer atmosphere) to 0.5 cm precipitable water. The middle panel shows the influence of the altitude, which shows influences from the gaseous species (ozone, oxygen, NO₂, SO₂, water vapor) and aerosols. The bottom panel shows the effect of albedo for the snow and ice settings in SMARTS. In the bottom panel, the baseline is the irradiance at 60°N instead of at 0°.