Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Effects of solution chemistry on the attachment of graphene oxide onto clay minerals

Xiaoyan Lu, ^{1, 2, a} Taotao Lu ^{3, a} Haojing Zhang, ¹ Zhongbo Shang, ¹ Jiuyan Chen, ²

Ying Wang, ² Deliang Li, ¹ Yanmei Zhou, ¹ and Zhichong Qi, ^{1*}

¹ Institute of Environmental and Analytical Sciences, Henan Joint International

Research Laboratory of Environmental Pollution Control Materials, College of Chemistry

and Chemical Engineering, Henan University, Kaifeng 475004, China

² Henan University Minsheng College, Kaifeng 475004, China

³ Department of Hydrology, University of Bayreuth, Bayreuth 95440, Germany

*Corresponding author: Zhichong Qi (qizhichong1984@163.com)

^a Xiaoyan Lu and Taotao Lu contributed equally.

Calculation of DLVO interaction energy

According to the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, the total interaction energy between particle and collector (V_{TOT}) can be defined as the sum of two interactions, the attractive van der Waals interaction (V_{VDW}) and the repulsive electrostatic double layer interaction (V_{EDL})^{S1}:

$$V_{TOT} = V_{VDW} + V_{EDL}$$
(S1)

The van der Waals interaction is calculated using the Hamaker approach and Gregory's formulation ^{S2:}

$$V_{VDW} = -\frac{Ar_{NP}}{6h\left(1 + \frac{14h}{\lambda}\right)}$$
(S2)

Where $r_{\rm NP}$ is the radius of GO nanoparticles, h is the separation distance between GO nanoparticles and quartz surface, λ is the characteristic wavelength of GO nanoparticle ($\lambda = 100$ nm), and A is the Hamaker constant. A =8.31×10⁻²¹ J ^{S3} was used for graphene particle- kaolinite interaction. For graphene- montmorillonite interaction, The Hamaker constant of GO nanoparticles-water- montmorillonite system can be calculated by following equation ^{S4}:

$$A_{132} = \left(\sqrt{A_{11}} - \sqrt{A_{33}}\right) \left(\sqrt{A_{22}} - \sqrt{A_{33}}\right)$$
(S5)

Where A_{132} is the Hamaker constant for the material 1 (GO nanoparticle) interaction with the material 2 (collector) through the material 3 (water), A_{11} , is the Hamaker constant of the GO, which is assumed to be 6.34×10^{-20} J, ^{S5} A_{22} is the Hamaker constant of the collector surface, which is 6.49×10^{-20} J, ^{S6} and A_{33} is the Hamaker constant of water, which is 3.70×10^{-20} J ^{S7}. Then, the Hamaker constant value of nanoparticles-water- montmorillonite system (A132) is obtained from above equations to be 3.70×10^{-21} J.

With the assumption of constant potential at the surface, the electrical double layer interaction can be calculated as ^{S8}:

$$V_{EDL} = \pi r_{NP} \varepsilon_0 \varepsilon_r \left\{ 2\phi_1 \phi_2 \ln \left[\frac{1 + \exp(-\kappa h)}{1 - \exp(-\kappa h)} \right] + (\phi_1^2 + \phi_2^2) \ln \left[1 - \exp(-2\kappa h) \right] \right\}$$
(S3)

where ε_0 is the vacuum permittivity (8.85×10⁻¹² C²/Jm), ε_r is the relative dielectric permittivity of water (78.4), ϕ_1 and ϕ_2 are the surface potentials of GO nanoparticles and clay, respectively, κ is the Debye reciprocal length and can be calculated as ⁸⁹:

$$\kappa = \sqrt{\frac{2N_A e^2 I}{\varepsilon_r \varepsilon_0 K_B T}}$$
(S4)

where N_A is the Avogadro number (6.02×10²³ mol⁻¹), *e* is the electron charge (-1.60×10⁻¹⁹ C), *I* is the ionic strength of the background electrolyte, K_B is Boltzmann constant (1.38×10²³ J/K), and *T* is Kelvin temperature (298 K).

Clay minerals	Chemical composition	Total specific surface area (m ² /g)	pH _{PZC} ^[S10-S12]		
Montmorillonite	(OH) ₄ Si ₈ Al ₄ O ₂₀ •nH ₂ O	49.4	2.5		
Kaolinite	Al ₄ [Si ₄ O ₁₀](OH) ₈	19.8	3.8		
Diatomite	SiO ₂ •nH ₂ O	1.6	1.5		

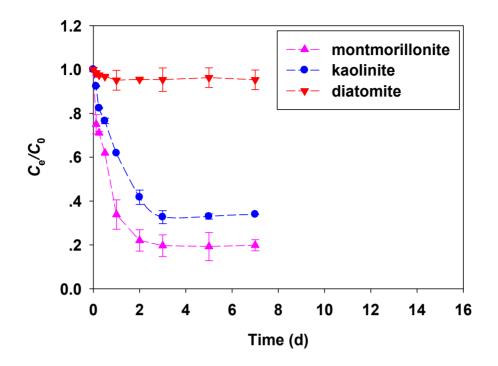
Table S1. Selected Physicochemical Properties of Clay Minerals Tested

Type of clay	solution chemistry ^a	pН	R^2 of isotherm model		
		-	Freundlich	Langmuir	
Diatomite	10 mM NaCl	5.0	0.981	0.809	
Montmorillonite	1 mM NaCl	5.0	0.929	0.859	
Montmorillonite	10 mM NaCl	5.0	0.988	0.924	
Montmorillonite	20 mM NaCl	5.0	0.767	0.638	
Kaolinite	1 mM NaCl	5.0	0.908	0.875	
Kaolinite	10 mM NaCl	5.0	0.949	0.933	
Kaolinite	20 mM NaCl	5.0	0.795	0.671	
Montmorillonite	10 mM NaCl	7.0	0.991	0.989	
Kaolinite	10 mM NaCl	7.0	0.857	0.806	
Montmorillonite	10 mM NaCl	9.0	0.868	0.823	
Kaolinite	10 mM NaCl	9.0	0.884	0.812	
Montmorillonite	0.1 mM CaCl ₂	5.0	0.887	0.786	
Kaolinite	0.1 mM CaCl ₂	5.0	0.817	0.658	
Montmorillonite	0.3 mM CaCl ₂	5.0	0.753	0.817	
Kaolinite	0.3 mM CaCl ₂	5.0	0.858	0.830	
Montmorillonite	$10 \text{ mM NaCl} + 0.1 \text{ mM TA}^a$	5.0	0.901	0.803	
Kaolinite	10 mM NaCl + 0.1 mM TA	5.0	0.957	0.785	
	1				

Table S2. Comparison of the R^2 values of the two isotherm models tested in this work.

a TA represent tartaric acid.

Type of clay	solution chemistry ^a	рН	ζ potential of GO ^b (mV)	$Z_{\text{ave-GO}}^{c}$ (nm)	ζ potential of clay ^d - (mV)	$arPsi_{ ext{max}}$	
						height (K _B T)	distance (nm)
Diatomite	10 mM NaCl	5.0	$\textbf{-23.8}\pm0.4$	256.3 ± 10.1	-25.2 ± 1.9	62.9	1.1
Montmorillonite	1 mM NaCl	5.0	-41.2 ± 1.1	192.8 ± 8.5	-15.8 ± 0.7	46.1	4.6
Montmorillonite	10 mM NaCl	5.0	$\textbf{-23.8} \pm 0.4$	256.3 ± 10.1	-11.6 ± 0.9	20.6	1.8
Montmorillonite	20 mM NaCl	5.0	-18.7 ± 0.9	283.2 ± 13.7	-8.6 ± 0.9	5.79	2.0
Kaolinite	1 mM NaCl	5.0	-41.2 ± 1.1	192.8 ± 8.5	-16.9 ± 0.5	65.6	4.4
Kaolinite	10 mM NaCl	5.0	$\textbf{-23.8}\pm0.4$	256.3 ± 10.1	-12.2 ± 0.2	13.8	2.5
Kaolinite	20 mM NaCl	5.0	-18.7 ± 0.9	283.2 ± 13.7	-10.3 ± 0.2	1.1	2.5
Montmorillonite	10 mM NaCl	7.0	-26.4 ± 0.5	245.1 ± 9.2	-14.8 ± 0.4	34.2	1.4
Kaolinite	10 mM NaCl	7.0	-26.4 ± 0.5	245.1 ± 9.2	-25.7 ± 0.7	61.6	1.3
Montmorillonite	10 mM NaCl	9.0	-29.6 ± 0.3	228.8 ± 4.5	-21.8 ± 1.2	66.6	1.0
Kaolinite	10 mM NaCl	9.0	-29.6 ± 0.3	228.8 ± 4.5	-33.6 ± 0.6	102.9	1.1
Montmorillonite	0.1 mM CaCl ₂	5.0	-23.2 ± 1.2	232.5 ± 6.9	-25.5 ± 0.8	89.4	2.7
Kaolinite	0.1 mM CaCl ₂	5.0	-23.2 ± 1.2	232.5 ± 6.9	-25.6 ± 1.7	81.8	2.3
Montmorillonite	0.3 mM CaCl ₂	5.0	-20.6 ± 0.4	276.6 ± 12.3	-23.6 ± 0.9	78.6	4.0
Kaolinite	0.3 mM CaCl ₂	5.0	-20.6 ± 0.4	276.6 ± 12.3	-24.8 ± 1.1	78.9	3.8
Montmorillonite	$10 \text{ mM NaCl} + 0.1 \text{ mM TA}^a$	5.0	-22.1 ± 0.7	175.5 ± 7.3	-21.3 ± 0.2	57.1	1.1
Kaolinite	10 mM NaCl + 0.1 mM TA	5.0	-22.1 ± 0.7	175.5 ± 7.3	-20.5 ± 0.6	70.2	3.5


Table S3. Calculated Maximum Energy Barriers (Φ_{max}) and The Respective Separation Distances of Particle–Collector DLVO Interaction Energy Profiles

^{*a*} TA represent tartaric acid.

^bZeta potential of GO; values after \pm sign represent standard deviation of three replicates.

^c Hydrodynamic diameter of GO based on DLS analysis, values after ± sign represent standard deviation of three replicates.

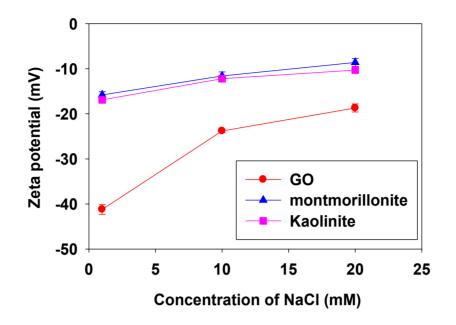

^{*d*}Zeta potential of clay mineral; values after \pm sign represent standard deviation of three replicates.

Fig. S1 Time required to reach equilibrium attachment of GO to clay ($m_{clay}=0.1$ g). C_e is the concentration of GO in liquid phase at time t; C_0 (15 mg/L) is the total GO concentration in the solution at t = 0. Error bars indicate standard deviation of triplicate samples.

Fig. S2 Effect of ionic strength on the attachment of GO onto diatomite.

Fig. S3 Zeta potential of GO and clay minerals in three different concentrations of NaCl solution. Error bars indicate standard deviation of triplicate samples.

References

- S1 R. Hogg, T. W. Healy, D. W. Fuerstenau, Mutual coagulation of colloidal dispersions. *Trans Faraday Soc*, 1966, **18**, 1638-1651.
- S2 J. Gregory, Approximate expressions for retarded van der waals interaction. J. Colloid Interf. Sci., 1981, 83,138-145.
- S3 N.P. Sotirelis, C.V. Chrysikopoulos, Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. *Sci. Total Environ.*, 2016, **579**, 736-744.
- S4 J. Bergendahl, D. Grasso, Prediction of colloid detachment in a model porous media: Thermodynamics. *Aiche J.*, 1999, 45, 475-484.
- S5 L. Feriancikova, S. Xu, Deposition and remobilization of graphene oxide within saturated sand packs. 2012, *J. Hazard. Mater*, **235**, 194-200.
- S6 H. Li, X. Peng, L. Wu, M. Jia and H. Zhu, Surface potential dependence of the Hamaker constant, *J. Phys. Chem. C*, 2009, **113**, 4419-4425.
- S7 J. N. Israelachvili, Intermolecular and Surface Forces. 1992, Academic Press: San Diego, CA.
- S8 M. Elimelech, C. R. O'Melia, Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. 1990, *Langmuir* 6, 1153-1163.
- S9 W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions. 1989, Cambridge University Press, Cambridge.
- S10. V. P. Evangelou, Environmental Soil and Water Chemistry: Principles and Applications, 1998, John Wiley & Sons: New York.
- S11. C. Appel, Q.M. Lena, R. Dean Rhue and E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility *Geoderma*, 2003, **113**, 77-93.
- S12. W. T. Tsai, K. J. Hsien, Y. M. Chang and C. C. Lo, Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. 2005, *Bioresour Technol*, **96**, 657-663.