Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material

Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos

Nadja R. Brun^{1,2*}, Bjørn E.V. Koch³, Mónica Varela³, Willie J.G.M. Peijnenburg^{1,4}, Herman P. Spaink³, Martina G. Vijver¹

¹Institute of Environmental Sciences (CML), Leiden University, The Netherlands ²Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA ³Institute of Biology, Leiden University, Leiden, The Netherlands ⁴National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands

Contents

Table S1	Primer sequences used for qRT-PCR	Page S2
Table S2	Speciation of Cu in egg water with and without SRHA	Page S3
Figure S1	Characterization of CuNP	Page S5
Figure S2	TOC concentrations	Page S5
Figure S3	Immune response in zebrafish embryos after waterborne exposure	Page S6
Figure S4	PSNP engulfed by a macrophage and damage of cellular structure by CuNP	Page S7
Figure S5	Expression of <i>irg1</i> and <i>il1</i> β in skin cells	Page S7
Figure S6	Gene expression in zebrafish embryos after waterborne exposure	Page S8
Figure S7	Gene expression in zebrafish embryos after injection	Page S8

Target gene	Primer Sequence (5' to 3')	Accession no. ^a
rpl13α	Forward: AGC TCA AGA TGG CAA CAC AG	NM_198143.1
	Reverse: AAG TTC TTC TCG TCC TCC GA	
il1β⁰	Forward: CAT TTG CAG GCC GTC ACA	NM_212844.2
	Reverse: GGA CAT GCT GAA GCG CAC TT	
tnfa ^b	Forward: ACC AGG CCT TTT CTT CAG GT	NM_212859.2
	Reverse: TGC CCA GTC TGT CTC CTT CT	
irg1Þ	Forward: TCT CCA ATG AGG CTC ACA ACA TCC	NM_001077607.1 ^c
	Reverse: AGC ACA GGC AGC AGC ACT AC	
socs3a	Forward: CCA ACA CGG GTC TTC TGT G	NM_199950
	Reverse: CGA GTC ACA TCC ATC GTC A	
ccl20a	Forward: TGC AGC TGT GTC GTG TTG C	NM_001136254.2 ^c
	Reverse: ATT GCT TGC ACC TTC TCC CTC	
mucms1	Forward: CAC AGG ATT CAC TGC CAA C	XM_009293560.1 ^c
	Reverse: GCA TGA TGT CGT GTT TTT GC	
trpv6	Forward: GGG ATG GAA TGA AAT GTT GG	NM_001001849.1 ^c
	Reverse: TAA TGC AGG CTG CAT TGT TC	
apoa2	Forward: GCA CTC CAA GTG TCA GTG TGT	NM_001130586.1
	Reverse: TCT AGT GCT GGC TCA ACT GC	
arrdc3b	Forward: GAA AGA CCC GAA GCT CCA C	NM_001004605.1 ^c

Table S1 Primer sequences used for quantitative Real-Time PCR analysis.

	Reverse: CTT GCC TCC CTC CAT AAA AC	
try	Forward: CGC CAG TGG AAG CAA TTA C	NM_131708.2 ^c
	Reverse: GGG GTT CTC CAA TGC CCT TT	
aox5	Forward: CTC CGC AGG GTG TTT TGT TG	NM_001278796.1 ^c
	Reverse: GGG GAT CAA CCT CAG AAT AC	

^a GeneBank accession number (http://www.ncbi.nlm.nih.gov).

^b Primer pairs used for expression analysis in intestinal tissue.

^c self-designed primer pairs

	Without SRHA		With SRHA	
Componen	% of total	Species	% of total	- .
t	concentration	name	concentration	Species name
Cu+2	49.391	Cu+2	9.215	Cu+2
	7.588	CuOH+	1.416	CuOH+
	0.1	Cu(OH)2 (aq)	0.019	Cu(OH)2 (aq)
	0.576	Cu2(OH)2+2	0.02	Cu2(OH)2+2
	25.552	CuCl+	4.767	CuCl+
	2.739	CuCl2 (aq)	0.511	CuCl2 (aq)
	0.024	CuCl3-	2.616	CuSO4 (aq)
	14.022	CuSO4 (aq)	13.845	FA1-Cu(6)(s)
			26.098	FA2-Cu(6)(s)
			5.641	FA1-Cu(7)(aq)
			35.843	FA2-Cu(7)(aq)
Na+1	83.56	Na+1	83.554	Na+1
	1.954	NaSO4-	14.485	NaCl (aq)
	14.486	NaCl (aq)	1.954	NaSO4-
K+1	82.896	K+1	82.888	K+1
	2.578	KSO4-	14.525	KCI (aq)
	14.526	KCI (aq)	2.578	KSO4-
Mg+2	44.56	Mg+2	44.549	Mg+2
	45.468	MgCl+	45.455	MgCl+
	9.971	MgSO4 (aq)	9.969	MgSO4 (aq)
Ca+2	51.908	Ca+2	51.881	Ca+2
	33.419	CaCl+	33.401	CaCl+
	14.673	CaSO4 (aq)	14.667	CaSO4 (aq)
			0.026	(6)Ca+2D(s)
			0.013	FA1-Ca(6)(s)
Sr+2	60.677	Sr+2	60.642	Sr+2
	24.348	SrCl+	24.333	SrCl+
	14.975	SrSO4 (aq)	14.968	SrSO4 (aq)
			0.03	(6)Sr+2D(s)
			0.013	FA1-Sr(6)(s)
CI-1	81.745	CI-1	81.748	CI-1
	0.602	CaCl+	0.602	CaCl+

Table S2 Speciation of 0.59 mg L⁻¹ copper in egg water and egg water supplemented with 12.9 mg L⁻¹ Suwannee river fulvic acid (SRHA) calculated using Visual Minteq.

	4.536	MgCl+	4.535	MgCl+
	0.262	KCI (aq)	0.262	KCl (aq)
	12.846	NaCl (aq)	12.845	NaCl (aq)
SO4-2	31.01	SO4-2	31.016	SO4-2
	39.275	NaSO4-	22.544	MgSO4 (aq)
	1.054	KSO4-	5.993	CaSO4 (aq)
	22.548	MgSO4 (aq)	0.114	SrSO4 (aq)
	5.996	CaSO4 (aq)	39.278	NaSO4-
	0.114	SrSO4 (aq)	1.054	KSO4-
(7)H+1D(ac	7		0164	(7) Sr (20) (20)
)			0.104	(7)ST+2D(aq)
			7.55	(7)Ca+2D(aq)
			1.162	(7)K+1D(aq)
			35.876	(7)Mg+2D(aq)
			57.623	(7)Na+1D(aq)
HFA1-(6)(s)			87.209	HFA1-(6)(s)
			1.216	FA1-H(6)(s)
			2.778	FA1-Ca(6)(s)
			1.694	FA1-Cu(6)(s)
			7.051	FA1-Mg(6)(s)
			0.052	FA1-Sr(6)(s)
HFA2-(6)(s)			14.955	HFA2-(6)(s)
			74.924	FA2-H(6)(s)
			10.099	FA2-Cu(6)(s)
			0.021	FA2-Mg(6)(s)
HFA1-			85 851	HEA1-(7)(aq)
(7)(aq)			05.051	
			0.995	FA1-H(7)(aq)
			1.88	FA1-Ca(7)(aq)
			1.289	FA1-Cu(7)(aq)
			9.95	FA1-Mg(7)(aq)
			0.035	FA1-Sr(7)(aq)
HFA2-			15.339	HFA2-(7)(aq)
(7)(aq)			74 51	ΓΛΆ ΙΙ/7\/\
			/4.5L	
			10.110	FA2-Cu(7)(aq)
			0.033	FAZ-Mg(7)(aq)

H+1D(s)(6)	14.278	(6)Ca+2D(s)
	1.832	(6)K+1D(s)
	27.14	(6)Mg+2D(s)
	59.036	(6)Na+1D(s)
	0.311	(6)Sr+2D(s)

Figure S1. Characterisation of CuNP in medium with and without the addition of SRHA. (a) DLS profiles derived from the Malvern Zetasizer showing the distribution of the hydrodynamic diameter in relation to particle number (%) and (b) zeta potential of CuNP in egg water without SRHA after 0 h and 24 h. (c) Copper fraction (in %) and concentration of soluble copper (in mg L⁻¹) determined in the supernatant after centrifugation of 0.1 mg L⁻¹ CuNP and (d) dissolution profile of Cu over time of 0.1 mg L⁻¹ CuNP (low) and 1 mg L⁻¹ CuNP (high) in egg water supplemented with SRHA mg L⁻¹. Error bars are + standard deviation (SD) of measured values for each exposure group consisting of 3 replicates.

Figure S2. Total organic carbon (TOC) concentration in CuNP suspensions containing 30 mg L⁻¹ **SRHA (nominal) over time.** Error bars are + standard deviation (SD) of measured values for each exposure group consisting of 3 replicates.

Figure S3. Immune response in zebrafish embryos after waterborne exposure to CuNP, corresponding Cu(NO₃)₂, and PSNP. (a)Transcriptional alterations of immune response related genes (*il1β*, *tnfα*, *irg1l*, *socs3a*, *ccl20a*) in whole zebrafish embryos exposed to 1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂ concentration and 10 mg L⁻¹ PSNP from 72-120 hpf. Relative expression levels were normalized to *rpl13α*, calculated relative to expression levels in control embryos. Asterisks indicate significant differences to controls (*p < 0.05, **p < 0.01, and ***p < 0.001). Values are presented as mean ± SD (n = 5). (b) Corrected total cell fluorescence (CTCF) of the tail area from *Tg(mpx:eGFP)* zebrafish embryos, in which GFP is expressed in neutrophils, exposed to 0.1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂ concentration and 10 mg L⁻¹ PSNP. The Analysis is based on images as depicted in c (n = 10). Embryos were exposed from 96-120 hpf. The tendency of increased neutrophil recruitment in the tail can be observed for CuNP. (c) Representative images of tail fluorescence. (d) Representative images of control, 0.1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂, and 10 mg L⁻¹ PSNP. The *frag(mpx:eGFP)* zebrafish embryos were exposed from 96-120 hpf. The tendency of increased neutrophil recruitment in the tail can be observed for CuNP. (c) Representative images of tail fluorescence. (d) Representative images of control, 0.1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂, and 10 mg L⁻¹ PSNP waterborne exposed *Tg(il1b:GFP-F)*, *Tg(mpeg1:eGFP)*, *Tg(mpx:eGFP)* zebrafish embryos. Embryos were exposed from 96-120 hpf. Transgenic reporter zebrafish line *il1β* expresses interleukin 1 beta, *mpeg1:eGFP* marks macrophages, *mpx:eGFP* marks neutrophils. Fluorescent red labeled PSNP show accumulation in the gut and on the skin, however, the particles are not co-localized with increased expression or phagocytic cell recruitment.

Figure S4. PSNP around neuromast engulfed by a macrophage and damage of cellular structure by CuNP. (a) Neuromast structure with healthy hexagonal cells in the control and cellular neuromast structure affected by CuNP treatment as shown by the expression of $il_{1}\beta$ (green). (b) PSNP accumulation (red) in neuromast (white arrow) is delineated by white lines and below PSNP (red) is phagocytosed by a *tnfa* positive macrophage (green). Scale bar = 10 µm.

Figure S5. Expression of *irg1l* and *il1* β in skin cells. (a) Images of *in situ* hybridization showing the expression of *irg1l* mRNA on the outer epidermis in zebrafish embryos at 120 hpf after exposure to 1 mg L⁻¹ CuNP. (b) Skin cells towards the distal end of the yolk sack. Control cells with normal hexagonal structures and CuNP exposed embryos with structurally damaged cells expressing *il1* β (green).

Figure S6. Gene expression in zebrafish embryos after waterborne exposure to CuNP, corresponding Cu(NO₃)₂, and PSNP. Transcriptional alterations of mucin (*mucms1*), transient receptor potential cation channel (*trpv6*), apolipoprotein (*apoa2*), arrestin domain containing 3a (*arrdc3a*), aldehyde oxidase 5 (*aox5*), and trypsin (*try*) in zebrafish embryos exposed to 1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂ concentration and 10 mg L⁻¹ PSNP from 72-120 hpf. Relative expression levels were normalized to *rpl13a*, calculated relative to expression levels in control embryos. Asterisks indicate significant differences to controls (*p < 0.05, **p < 0.01, and ***p < 0.001). Values are presented as mean \pm SD (n = 5).

Figure S7. Gene expression in zebrafish embryos after injection CuNP and PSNP. Transcriptional alterations of mucin (*mucms1*), transient receptor potential cation channel (*trpv6*), apolipoprotein (*apoa2*), arrestin domain containing 3a (*arrdc3a*), aldehyde oxidase 5 (*aox5*), and trypsin (*try*) in zebrafish embryos exposed to 1 mg L⁻¹ CuNP, corresponding Cu(NO₃)₂ concentration and 10 mg L⁻¹ PSNP from 72-120 hpf. Relative expression levels were normalized to *rpl13α*, calculated relative to expression levels in control embryos. Asterisks indicate significant differences to controls (*p < 0.05, **p < 0.01, and ***p < 0.001). Values are presented as mean \pm SD (n = 5).