Supplementary Information

Nano-QSAR modeling for ecosafe design of second generation TiO₂-based nano-photocatalysts

Alicja Mikolajczyk[†][‡], Agnieszka Gajewicz[†]*, Ewa Mulkiewicz[§], Bakhtiyor Rasulev[¶], Martyna Marchelek[‡], Magdalena Diak[‡], Seishiro Hirano¹⁷, Adriana Zaleska-Medynska[‡] and Tomasz Puzyn[†]

[†] Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

[‡] Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

[§] Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

[¶] Center for Computationally Assisted Science and Technology, North Dakota State University, NDSU Research Park Drive, P.O. Box 6050, Fargo, North Dakota 58108, United States

 $^{\Pi}$ Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 16-2 Onogawa, Ibaraki 305-8506, Japan

*Corresponding author: Agnieszka Gajewicz; University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland; e-mail: <u>a.gajewicz@qsar.eu.org</u>; phone: +48 58 523 524

TABLE S1. Materials, methods and sample characteristic

Materials

Titanium(IV) isopropoxide (TIP) (97%), $PdCl_2$ (5 wt.% in 10 wt.% HCl) $HAuCl_4$ ($Au\approx52\%$) and K_2PtCl_4 (98%) were purchased from Sigma-Aldrich. Cyclohexane, isopropyl alcohol, hydrazine, acetone, AOT (dioctylsulfosuccinate sodium salt), $AgNO_3$, (POCH S.A. Poland) were used without further purification.

Preparation of monometallic and bimetallic nanoparticles supported on TiO_2 by microemulsion and sol-gel method

Noble metal (Au, Ag, Pt) modified TiO₂ were obtained by hydrolysis of TIP (titanium tetraisopropoxide) in a water/AOT/cyclohexane microemulsion containing one or combination of two metal precursors in water cores. Mixing was carried out for 1 h under nitrogen; the metal ions were then reduced by dropwise addition of a microemulsion containing the reducing agent (hydrazine). The titanium tetraisopropoxide was added into the microemulsion system containing noble metal nanoparticles. The microemulsions were mixed and purged with nitrogen, washed, dried and calcined for 3 h at different temperatures. Pure TiO₂ was synthesized in the same approach without addition of metal precursors. TiO₂ modified with Au, Ag, Pt and Pd nanoparticles were prepared using the sol–gel method by hydrolysis reaction of TIP) with water. Firstly, 25 cm³ TIP was dispersed in 25 cm³ ethanol at the room temperature followed by 30 min solution mixing. After that, 14.2 cm³ of water was added to the alkoxide solution and white precipitate was formed. Finally, a certain amount of AgNO₃, HAuCl₄, K₂PtCl₄, or/and PdCl₂, was dissolved in deionized water and mixed with TiO2 gel for 1 h. All the samples were obtained by the sequential addition of metal precursors to TiO₂ gel. The obtained photocatalysts were dried at 80°C and thencalcined in air at 400°C for 3 h.

	clear TiO ₂								
Kind	20	intensity	amount of anatase (A)/brookite (B) [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c				
А	25.32	3419	36/64	58.74	a=3.79654 ±0.000668				
					c=9.518378±0.00268				
			4.5 A	Ag					
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of	Lattice lenght of anatase structure [Å] a=b≠c				
					a=3.788592±0.001051				
А	25.33	3667		55.23	c=9.488774±0.003057				
	•		2.5 Ag_	0.1Pt					
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c				
					a=3,818419±0,002				
А	25.3	3624	30/70	56.35	c=9,515961±0,008				
			1.5Ag_0	.25Pt					
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c				
					a=3,7853±0,005				
А	25.3	4134	29/71	456/B54.97	c=9,4621±0,0114				
Pt	39.8	531							
Pt	46.3	442							
			0.5Ag_0	0.5Pt					
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c				
			07//0		a=3,7364±0,0004				
A	25.5	36.2	37/63	(54.2 nm)	c=9,0256±0,001				

TABLE S2. Experimental characteristic of obtained Me_{mix}@TiO₂ photocatalysts.

Pt	39.7	7 4	61			
				6.5 Ag	<u>g_0.5 Pt</u>	
Kind	20	inte	nsity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c
А	25.2	.4 3	252	29/71	150	a=3,806±0,0041
D+	20.7	16 6	15			C=9,4070±0,0133
Pt Pt	46	$\frac{1}{2}$	15 45			
10	10.		10	1.2	5 Pt	
Kind	20	inte	nsity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c
						a=3.792803±0.000658
А	25.3	32 3	768	36/64	56.5	c=9.497447±0.002704
				0.5 Aı	1_0.1 Pt	
Kind	20	inte	nsity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å] a=b≠c
						a=3,8199±0,0026
А	25.	3 3	589	31/69	60.19	c=9,5358±0,0067
Au	44.	6 2	90?			
Au	64.	7 3	72			
0.5 Ag						
Kind	20	inte	nsity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
				21/60	100.12	a=3,782202±0,001545
А	25.3	7	07	51/09	100.12	c=9,425336±0,006059
		<u>_</u>		6.5	5 Ag	
Kind	20	inte	nsity	amount of anatase/brookite	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
						a=3.794686±0.000524
A	25.28	33	838		56.48	c=9.49257±0.002055
P	28.05	6	23			
K	20.05		23	4.5 As	g 0.1Pt	
Kind	20	inte	nsity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
						a=3,788±0,004
A	25.4	3:	888	27/73	219.7	c=9,4605±0,0082
				2.5 ag	_0.25Pt	
Kind	20	inte	nsity	amount of anatase/brookite	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
						a=3,767267±0,04
A	25.4	3	337	29/71	32.28	c=9,567995±0,09
Pt	39.7	5	11			
Pt	46.25	4	36	1 54-	- 0 E D+	
		intoneit		amount of	Crystallite size	
Kind	20	v	ana	atase/brookite [%]	of anatase [Å]	Lattice lenght of anatase structure [Å]
	25.0	0514			(51.12 nm)	a=3,8153±0,0047
A	25.3	3/11		37/63		c=9,4929±0,0067

Pt	39.78	499)								
Pt	46.2	402	2								
	1					0.	1 Pt	-			
Kind	20	inten y	ISIT	anat	amount of tase/brookite	[%]	of anatase [Å]	Lattice lengh	t of anatase structure [Å]		
^	25.2	420	1		22/60		62.75	a=	a=3,8119±0,002		
А	25.3	438	1		32/68		03.75	C=	9,5111±0,005		
		<u> </u>				0.1	l Au				
Kind	20	inten y	sit	anat	amount of tase/brookite	[%]	Crystallite size of anatase [Å]	2 Lattice lengh	t of anatase structure [Å]		
								a=3.8	29351±0.001906		
A	25.3	352	2		32/68		64.67	c=9.4	88823±0.007422		
				_		0.5 Aı	1_0.1 Pt	-			
Kind	20	inten y	sit	anat	amount of tase/brookite	[%]	Crystallite size of anatase [Å]	Lattice lengh	t of anatase structure [Å]		
	07.0				0.0 (T .0		== 10	a	=3,791±0,001		
А	25.3	500	6		30/70		75.18	C=	9,5179±0,0053		
Au?	38.3	135	3								
Au	44.6	319)								
Au	64.7	377	7								
						2.5	% Ag				
	Kind			20	intensity	anat	mount of	Crystallite	Lattice lenght of		
	<u></u>					6281 28/72		Size of allatase	anatase sti ucture [A]		
	А		2	25.3	6281			75.35	c=9,503±0,004		
						1.5Ag	<u>g_0.1Pt</u>	6 • 111			
	Kind			20	intensity	a anat	mount of ase/brookite	Crystallite size of anatase	Lattice lenght of anatase structure [Å]		
									a=3,7835±0,002		
	А		2	25.3	3759		29/71	368	c=9,5037±0,0076		
						L0.5Ag	0.25Pt				
	. I			20		a	mount of	Crystallite	Lattice lenght of		
	кіпа			20	Intensity	anat	ase/brookite	size of anatase	anatase structure [Å]		
					2050		22.462	(2.0.2	a=3,799528±0,0029		
	A		2	25.3	3859		32/68	63.93	c=9,5171±0,011		
						6.5Ag	_0.25Pt				
	Kind			20	intensity	anat	mount of ase/brookite	Crystallite size of anatase	Lattice lenght of anatase structure [Å]		
									a=3,8033±0,0037		
	А		2	25.2	5.2 3260			127	c=9,4655±0,0121		
	Pt		3	9.86	584						
	Pt		4	ł6.3	428						
						4.5 A	g_0.5Pt				
	Kind			20	intensity	a anat	mount of ase/brookite	Crystallite size of anatase	Lattice lenght of anatase structure [Å]		
									a=3,7965±0,0017		
	A		2	25.3	3661		31/69	76.96	c=9,4867±0,0059		
Pt 39.7 515											

Pt	46.3?	439			
			0.5 Pt		
Kind	20	intensity	amount of anatase/brookite	Crystallite size of anatase	Lattice lenght of anatase structure [Å]
					a=3.80218±0.000695
А	25.29	3917	36/64	66.24	c=9.51724±0.004139
Pt	40.13	308			
Pt	46.3	308			
			0.5 Au_0.1 Pt		
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
					a=3,8265±0,0028
А	25.3	3791	31/69	63.03	c=9,5393±0,006
Au	44.6	327			
Au	64.6	402			
			0.1 Au_0.1 Pt		
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
					a=3,825767±0,0018
А	25.3	3023	32/68	54.66	c=9,4718±0,0073
			1.5 Ag		
Kind	20	intensity	amount of anatase/brookite	Crystallite size of	Lattice lenght of anatase structure [Å]
					a=3,813±0,004
А	25.3	6636	32/68	98	c=9,483±0,009
			0.5Ag_0.1 Pt		
Kind	20	intensity	amount of anatase/brookite [%]	Crystallite size of anatase [Å]	Lattice lenght of anatase structure [Å]
					a=3,7525±0,0038
А	25.3	4333	29/71	112.71	c=9,5235±0,006
			6.5 Ag 0.1 Pt		
Kind	20	intensity	amount of anatase/brookite	Crystallite size of	Lattice lenght of anatase structure [Å]
					a=3.791733±0.005176
A	25.3	3329	35.4/61.1/3(rutile)	57.04	c=9.49295±0.014334
			4.5 Ag_0.25Pt		
Kind	20	intensity	amount of anatase/brookite	Crystallite size of	Lattice lenght of anatase structure [Å]
А	25.3	3510	31/69	128.86	c=9,4722±0,0133
Pt	39.66	656			
Pt	46.3	477			
			2.5 Ag 0.5 Pt		
Kind	20	intensity	amount of anatase/brookite	Crystallite size of	Lattice lenght of anatase structure [Å]
					a=3,733865±0,001
А	25.29	3269	35/65	138.7	c=9,025991±0,003
Pt	39.8	508			
Pt	46.3	426			
			0.25 Pt		

Kind	20	intensity	amount of anatase/brookite		Crystallite	Lattice lenght of	
					3120 01		
А	25.3	3695	32/68		63.94	c=9,4895±0,0043	
		<u> </u>	0 25 Au				
Kind	20	intensity	amoi	int of	Crystallite	Lattice	lenght of
		meenorey			Grystamee	a=3.817	1000000000000000000000000000000000000
А	25.3	3634	32,	/68	62.13	c=9,479	3±0,0057
Au??	44.4	360					
Au	64.6	420					
			0.5 Au_0.1	Pt			
Kind	20	intensity	amou anatase/	int of brookite	Crystallite	Lattice	lenght of
				DIOOMIC	5120 01	a=3 780	7+0.0005
А	25.3	9035	34,	/66	172.5	c=9,519	1±0,0018
Au	38.3	1546					
Au	44.5	305					
Au	65.1?	298					
The efficiency of pl	nenol degra	dation after 1	1 h irradiati	on [%] for s	amples obtaine	ed by sol gel i	nethod
	Amoun	t of noble met	al precursor	[mol.%]	BET surface	Under Vis	Under UV-
Sample label	٨a	D+	1 	Dd	area	light	Vis light
	Ag	Pl	Au	Pu	[m ² /g]	[%]	[%]
0.1Ag	0	0	0	0	61	12.9	61.8
0.5Ag	0.1	0	0	0	91	6.4	64.4
1.5Ag	0.5	0	0	0	89	16.6	70.3
2.5Ag	1.5	0	0	0	91	24.4	/3.5
4.5Ag	2.5 4 F	0	0	0	<u>б/.5</u>	9.2	/3.5
$0.1Ag_{0.1Au}$	4.5	0	01	0	100.5	23 1 E	53 520
1 FAg 0.1 Au	0.1	0	0.1	0	00.2	1.5	52.9
$1.5Ag_{0.1Au}$	0.5	0	0.1	0	90.2	15.0 0 1	60
$0.1 \Delta \sigma 0.5 \Delta u$	2.5	0	0.1	0	103	86	51 4
2 5 A g 0 5 Au	0.1	0	0.1	0	90.4	0.0	64.6
4 5 A g 0 5 Au	25	0	0.5	0	111.4	4.2	69.5
0 1 Δσ 0 1 Pt	4 5	0	0.5	0	92	31.5	85.4
0.5Ag 0.1Pt	0.1	0.1	0	0	94	12.8	68.4
1.5Ag 0.1Pt	0.5	0.1	0	0	145.6	17.1	85.6
2.5Ag 0.1Pt	1.5	0.1	0	0	86	6.9	71.1
0.1Ag 0.5Pt	2.5	0.1	0	0	112.5	60.1	96.8
2.5Ag_0.5Pt	0.1	0.5	0	0	119	66	96.1
0.1Ag_0.1Pd	2.5	0.5	0	0	79	14	77.4
0.5Ag_0.1Pd	0.1	0	0	0.1	77.5	14.4	72.1
1.5Ag_0.1Pd	0.5	0	0	0.1	98	19.6	96.0
2.5Ag_0.1Pd	1.5	0	0	0.1	98	25.4	94.9
0.1Ag_0.5Pd	2.5	0	0	0.1	115	45.4	99.2
2.5Ag_0.5Pd	0.1	0	0	0.5	107	39.2	99.5
4.5Ag_0.5Au	2.5	0	0	0.5	99	1.8	100
0.1Ag_0.1Pt_0.1Au	4.5	0	0.5	0	94	11.5	84.4
0.1Pt_0.1Au_0.1Pd	0.1	0.1	0.1	0	92	49.1	100
0.1Ag_0.1Pt_0.1Pd	0	0.1	0.1	0.1	89	78.5	100
0.1Ag_0.1Au_0.1Pd	0.1	0.1	0	0.1	85	8.0	92.8
0.1Ag 0.1Pt 0.1Au 0.1Pd	0.1	0	0.1	0.1	94	49.9	100

ID	Name	Split	Exp. endpoint	Pred. by model eq. 6	Pred. by model eq. 7
1	0.1Pt	Training	4.53	4.69	4.65
2	0.1Au	Training	4.56	4.69	4.65
3	0.25Au	Training	4.62	4.69	4.69
27	0.5Ag_0.1Pt	Test	4.64	4.79	4.74
4	0.25Au_0.25Pt	Training	4.66	4.69	4.75
5	0.05Au_0.05Pt	Training	4.67	4.69	4.65
6	0.25Pt	Training	4.67	4.69	4.69
28	0.5Au_0.5Pt	Test	4.68	4.69	4.86
7	0.1Au_0.1Pt_400	Training	4.68	4.69	4.67
8	0.5Au_0.25Pt	Training	4.70	4.69	4.81
9	0.1Au_0.25Pt	Training	4.70	4.69	4.71
29	1.25Pt	Test	4.71	4.69	4.92
10	0.5Ag	Training	4.72	4.79	4.72
11	0.5Pt	Training	4.73	4.69	4.74
12	0.5Ag_0.25Pt	Training	4.73	4.79	4.78
30	0.5Au_0.1Pt_400	Test	4.75	4.69	4.77
13	0.25Au_0.1Pt	Training	4.76	4.69	4.71
14	1.5Ag_0.1Pt	Training	4.84	4.97	4.93
31	1.5Ag	Test	4.89	4.97	4.90
15	0.5Ag_0.5Pt	Training	4.94	4.79	4.84
16	1.5Ag_0.25Pt	Training	5.01	4.97	4.96
17	2.5Ag_0.1Pt	Training	5.06	5.15	5.11
32	1.5Ag_0.5Pt	Test	5.26	4.97	5.02
18	2.5Ag_0.5Pt	Training	5.32	5.15	5.20
19	2.5Ag	Training	5.35	5.15	5.09
20	2.5Ag_0.25Pt	Training	5.37	5.15	5.15
33	4.5Ag_0.1Pt	Test	5.54	5.51	5.48
21	6.5Ag_0.1Pt	Training	5.63	5.88	5.85
22	4.5Ag_0.25Pt	Training	5.65	5.51	5.51
23	4.5Ag_0.5Pt	Training	5.65	5.51	5.57
34	4.5Ag	Test	5.70	5.51	5.46
24	6.5Ag_0.5Pt	Training	5.80	5.88	5.94
25	6.5Ag_0.25Pt	Training	5.84	5.88	5.88
26	6.5Ag	Training	5.88	5.88	5.83

Table 3. List of toxicity data splitting.

1				
e	The correlation coefficient The root mean square error of calibration	Measure of goodness-of-fit	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{pred})^{2}}{\sum_{i=1}^{n} (y_{i}^{obs} - \tilde{y}^{obs})^{2}} RMSEC = \sqrt{\frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{obs})^{2}}{n}}$	$\left(\frac{y_i^{pred}}{y_i^{pred}}\right)^2$ where: y_i^{obs} – experimental (observed) value of the property for the i th compound from the training set; y_i^{pred} – predicted value for i th compound from the training set; y ^{obs} – the mean experimental value of the property in the training set; n – the number
	The cross-validated coefficient The root mean square error of calibration	Measure stability of the model	$Q_{LOO}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{predev})^{2}}{\sum_{i=1}^{n} (y_{i}^{obs} - \tilde{y}^{obs})^{2}} \qquad RMSECV = \sqrt{\frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{obs})^{2}}{n}}$	$\frac{1}{\left(\frac{1}{2}\right)^{2}}$ of compounds in the training set. where: y_{i}^{obs} – experimental (observed) value of the property for the i th compound; y_{i}^{predcv} – cross-validated predicted valuef or i th compound; y – the mean experimental value of the property in the training set; n – the number of compounds in the training set.
3				
] (] (The external-validation coefficient The root mean square error of prediction	Measure external predictivity	$Q_{EXT}^{2} = 1 - \frac{\sum_{j=1}^{k} \left(y_{j}^{obs} - y_{j}^{pred} \right)^{2}}{\sum_{j=1}^{k} \left(y_{j}^{obs} - \hat{y}^{obs} \right)^{2}} \qquad RMSEP = \sqrt{\frac{\sum_{j=1}^{k} \left(y_{j}^{obs} - y_{j}^{obs} \right)^{2}}{k}}$	$\frac{y_{j}^{pred}}{j}$ where: y_{j}^{obs} – experimental (observed) value of the property for the j th compound from the validation set; y_{j}^{pred} – predicted valuef or j th compound from the validation set; \hat{y}^{obs} – the mean experimental value of the property in the validation set; k – the
4 (Concordance Correlation Coefficient	The accuracy and different variants of r_m^2 Restrictive parameter for expressing external predictivity	$CCC = \frac{2\sum_{j=1}^{k_{EXT}} \left(r_m^{2} = r^2 \left(1 - \sqrt{r^2 - r_0^2} \right) \right)}{\sum_{j=1}^{k_{EXT}} \left(y_j^{obs} - \hat{y}^{obs} \right)^2 + \sum_{j=1}^{k_{EXT}} \left(y_j^{obs} - y_j^{obs} - \hat{y}^{pres} \right) + k_{EXT} \left(\hat{y}^{obs} - \hat{y}^{pres} \right)}$	number of compounds in the validation set. Squared correlation coefficient values between the observed and predicted values of the compounds with/without intercept (r^2/r_0^2) .
		Mean absolute error	$MEA = \frac{1}{k} \sum y_{j}^{obs} - y_{j}^{pred}$	

Table S4. Statistic parameters towards development of Nano-QSPR model.*

A. Golbraikh, A. Tropsha, *Journal of Molecular Graphics and Modelling*, 2002, **20**, 269-276. (Please see, MS, References section, position 42) P. Gramatica, *QSAR & Combinatorial Science*, 2007, **26**, 694-701 (Please see, MS, References section, position 60)

K. Roy, S. Kar and P. Ambure, *Chemometrics and Intelligent Laboratory Systems*, 2015, **145**, 22-29. (Please see, MS, References section, position 61) K. Roy, N. R. Das, P. Ambure and N. B. Aher, *Chemometrics and Intelligent Laboratory Systems*, 2016, **152**, 18-33 (Please see, MS, References section, position 62)

Table S5. Parameters used in development of applicability domain.*

Coefficient	Description of coefficient
$h_i = \mathbf{x}_i^{\mathrm{T}} (\mathbf{X}^{\mathrm{T}} \mathbf{X}) (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{x}_i$	where the leverage value h_i for each i^{th} compound is calculated from the descriptor matrix (X), x _i is a row vector of molecular descriptors for a particular (i^{th}) compound. The value of h_i greater than the warning h^* value indicates that the structure of a compound substantially differs from those used for the calibration. Therefore, the compound is located outside the optimum prediction space. The h^* value is calculated as in eq. 16
$h^* = \frac{3(p+1)}{n}$	where <i>p</i> is the number of variables used in the model, <i>n</i> is the number of training compounds

*P. Gramatica, QSAR & Combinatorial Science, 2007, 26, 694-701.

P. Gramatica, S. Cassani and N. Chirico, *Journal of Computational Chemistry*, 2014, **35**, 1036-1044.

Comple lebel	[mol %]	[mol %]	[mol %]	[nm]	[mol/L]	[kJ/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol]	[eV]	[m ² /g]	[°C]	The efficienc degradatio irradiation	cy of phenol n after 1 h under [%]
Sample label	Amount of Ag	Amount of Pt	Amount of Au	Size of NPs	MW	Electron affinity ^a	Ionization ^a	Absolut electronnegativity b	Absolut hardness ^a	Ea	BET surface area	Calcinatio n temp.	visible light [%]	UV-Vis light [%]
0.5Ag	0.50	0.00	0.00	10.01	53.93	62.80	365.50	214.15	151.35	-1153.02	158.00	400.00	25.90	52.50
1.5Ag	1.50	0.00	0.00	9.80	161.80	188.40	1096.50	642.45	454.05	-1152.92	162.00	400.00	12.40	57.30
2.5Ag	2.50	0.00	0.00	7.53	269.67	314.00	1827.50	1070.75	756.75	-1152.82	163.00	400.00	6.60	68.90
4.5Ag	4.50	0.00	0.00	5.52	485.41	565.20	3289.50	1927.35	1362.15	-1152.61	183.00	400.00	8.90	89.00
6.5Ag	6.50	0.00	0.00	5.64	701.14	816.40	4751.50	2783.95	1967.55	-1152.41	148.00	400.00	0.90	94.00
0.5Ag_0.1Pt	0.50	0.10	0.00	11.27	73.44	83.33	452.50	267.92	184.59	-1153.02	161.00	400.00	7.90	68.50
1.5Ag_0.1Pt	1.50	0.10	0.00	36.80	181.31	208.93	1183.50	696.22	487.29	-1152.91	141.00	400.00	11.80	69.70
2.5Ag_0.1Pt	2.50	0.10	0.00	5.63	289.18	334.53	1914.50	1124.52	789.99	-1152.81	152.00	400.00	21.80	79.40
4.5Ag_0.1Pt	4.50	0.10	0.00	21.97	504.91	585.73	3376.50	1981.12	1395.39	-1152.61	115.00	400.00	13.70	96.40
6.5Ag_0.1Pt	6.50	0.10	0.00	5.70	720.65	836.93	4838.50	2837.72	2000.79	-1152.40	130.00	400.00	27.10	95.30
0.5Ag_0.25Pt	0.50	0.25	0.00	6.40	102.71	114.13	583.00	348.56	234.44	-1153.01	138.00	400.00	14.80	77.70
1.5Ag_0.25Pt	1.50	0.25	0.00	45.60	210.57	239.73	1314.00	776.86	537.14	-1152.90	172.00	400.00	16.70	75.80
2.5Ag_0.25Pt	2.50	0.25	0.00	3.23	318.44	365.33	2045.00	1205.16	839.84	-1152.80	144.00	400.00	7.30	80.40
4.5Ag_0.25Pt	4.50	0.25	0.00	12.87	534.18	616.53	3507.00	2061.76	1445.24	-1152.60	151.00	400.00	26.10	93.90
6.5Ag_0.25Pt	6.50	0.25	0.00	12.70	749.91	867.73	4969.00	2918.36	2050.64	-1152.39	135.00	400.00	9.30	87.70
0.5Ag_0.5Pt	0.50	0.50	0.00	5.42	151.48	165.45	800.50	482.98	317.53	-1152.99	165.00	400.00	6.50	79.10
1.5Ag_0.5Pt	1.50	0.50	0.00	5.12	259.34	291.05	1531.50	911.28	620.23	-1152.89	164.00	400.00	11.00	71.10
2.5Ag_0.5Pt	2.50	0.50	0.00	13.87	367.21	416.65	2262.50	1339.58	922.93	-1152.78	181.00	400.00	14.00	80.30
4.5Ag_0.5Pt	4.50	0.50	0.00	7.70	582.95	667.85	3724.50	2196.18	1528.33	-1152.58	166.00	400.00	10.90	94.30
6.5Ag_0.5Pt	6.50	0.50	0.00	15.00	798.68	919.05	5186.50	3052.78	2133.73	-1152.38	134.00	400.00	7.40	94.40
0.1Pt	0.00	0.10	0.00	6.38	19.51	20.53	87.00	53.77	33.24	-1153.07	134.60	400.00	4.80	89.40
0.25Pt	0.00	0.25	0.00	6.39	48.77	51.33	217.50	134.41	83.09	-1153.06	163.38	400.00	6.70	98.10
0.5Pt	0.00	0.50	0.00	6.62	97.54	102.65	435.00	268.83	166.18	-1153.04	129.20	400.00	25.70	93.00
1.25Pt	0.00	1.25	0.00	5.65	243.86	256.63	1087.50	672.06	415.44	-1152.99	152.10	400.00	12.50	97.00
0.1Au	0.00	0.00	0.10	6.47	19.70	22.28	89.01	55.65	33.37	-1153.06	187.80	400.00	4.00	56.10
0.25Au	0.00	0.00	0.25	6.21	49.24	55.70	222.53	139.11	83.41	-1153.05	168.10	400.00	6.80	54.10
0.5Au_0.1Pt	0.00	0.10	0.50	6.02	117.99	131.93	532.05	331.99	200.06	-1153.02	196.40	400.00	10.70	83.10
0.1Au_0.1Pt	0.00	0.10	0.10	5.97	39.21	42.81	176.01	109.41	66.60	-1153.06	190.59	400.00	8.00	71.80
0.25Au_0.25Pt	0.00	0.25	0.25	6.22	98.01	107.03	440.03	273.53	166.50	-1153.03	154.10	400.00	6.40	83.70
0.5Au_0.5Pt	0.00	0.50	0.50	6.34	196.03	214.05	880.05	547.05	333.00	-1152.99	151.07	400.00	12.60	76.00
0.5Au_0.25Pt	0.00	0.25	0.50	5.11	147.25	162.73	662.55	412.64	249.91	-1153.01	153.48	400.00	12.70	71.70
0.1Au_0.25Pt	0.00	0.25	0.10	4.97	68.47	73.61	306.51	190.06	116.45	-1153.05	105.00	400.00	9.90	90.60
0.25Au_0.1Pt	0.00	0.10	0.25	4.54	68.75	76.23	309.53	192.88	116.65	-1153.04	150.45	400.00	6.10	77.60
0.05Au_0.05Pt	0.00	0.05	0.05	6.48	19.60	21.41	88.01	54.71	33.30	-1153.07	164.97	400.00	11.20	64.10

Table S6. List of quantum-mechanical descriptors calculated for photocatalyst obtained by microemulsion method.

Table S8. Double Cross-Validation data for develo	oper MLR Nano-QSAR models.*
---	-----------------------------

MLR equation	LogEC50 = 4.6897(±0.0305)	LogEC50 = 4.6100(±0.0333)
	+0.1035(10.0101) /01101 _{Ag}	$+0.0004(\pm 0) \mu_{mix}$
IN LERNAL Validation Parameters		
P ²	0.9274	0.928
R^2	0.9247	0.9253
SEE	0.1247	0.1242
Q^2	0.9153	0.9149
SDEP	0.1299	0.1302
Scaled Average $r_m^2_{LOO}$	0.8852	0.8849
Scaled Delta $r_m^2_{L00}$	0.0454	0.0427
MAE	0.0900	0.0961
2D	0.086	0.0871
For 95% Training Data :		
MAE	0.0828	0.0851
SD MAE, 2*CD	0.0658	0.0755
MAE+3*SD Dradiation Quality)		
Prediction Quality):	MUDERATE	MODERATE
EXTERNAL Validation Parameters (100% data: TEST SET):		
$0^{2}_{\rm E1}$	0.8947	0.8745
O^2_{F2}	0.8936	0.8732
Scaled Average r_m^2	0.9408	0.8567
Scaled Delta r r_m^2	0.0284	0.0613
CCC	0.9374	0.9237
MAE	0.0979	0.1086
SD	0.078	0.0825
For 95% Test Data :		
$Q^2_{ m F1}$	0.9364	0.9551
$Q^2_{\rm F2}$	0.9311	0.9513
Scaled Average r _m ²	0.9523	0.8769
Scaled Delta r _m ²	0.0155	0.0271
CCC	0.9603	0.9723
MAE	0.0771	0.0769
SD	0.066	0.0307
MAE+3*SD	0.2751	0.1689
Prediction Quality	MODERATE	GOOD

*K. Roy, P. Ambure, *Chemometrics and Intelligent Laboratory Systems*, 2016, **159**, 108-126 (Please see, MS, References section, position 45); K. Roy, S. Kar and P. Ambure, *Chemometrics and Intelligent Laboratory Systems*, 2015, **145**, 22-29 (Please see, MS, References section, position 61)

Table S9. The external validation criteria and	results analysis based on Go	olbraikh and Tropsha method.*
--	------------------------------	-------------------------------

The external validation criteria	For model from eq.6	For model from eq.7
$R^2_{\rm Ext} > 0.6$	0.90	0.90
$Q^{2}_{F1}/Q^{2}_{F2}/Q^{2}_{F3} > 0.6$	0.88/0.88/0.90	/0.83/0.83/0.87/
Rcvext2 >0.5	0.92	0.93
$(R^2_{\rm Ext} - R_0^2) / R^2_{\rm Ext} < 0.1$	0.01	0.07
$abs(R_0^2 - R'_0^2) < 0.3$	0.06	0.28
$r_{\rm m}^2 > 0.5$	0.74	0.56
$0.85 \le k \le 1.15$	1.01	1
$0.85 \leq k' \leq 1.15$	0.99	1

* A. Golbraikh, A. Tropsha, *Journal of Molecular Graphics and Modelling*, 2002, **20**, 269-276. (Please see, MS, References section, position 22); G. Melagraki and A. Afantitis, *RSC Advances*, 2014, **4**, 50713-50725. (Please see, MS, References section, position 43)

Where:

 R_{Ext}^2)(simply called R^2 by the authors): Correlation coefficient between the predicted and observed activities

Rcv²: External cross validation

 R_0^2 : Coefficient of determination: predicted versus observed activities

 R'_0^2 : Coefficient of determination: observed versus predicted activities

k = slope: predicted versus observed activities regression lines through the origin

k'= slope: observed versus predicted activities regression lines through the origin

 $r_m^2 = r^2 (1 - \sqrt{r^2 - r_0^2})$ (proposed by Roy group) similar to to the Golbraikh and Tropsha concept where r^2 , r_0^2 correspond to R^2 and R_0^2 in the Golbraikh and Tropsha method.

Table S10. 7	'he external validation	criteria and results	analysis based or	n Golbraikh and	Tropsha
method.*					

Obtained random models parameters for model from eq. 6:	Value of selected parameters		
Average $R^2 Y_{scr}$:	0.04		
Average $Q^2 Y_{scr}$:	-0.13		
The y-rand R^2 range	-0.24-0.51		
Obtained random models parameters for model from eq. 7:	Value of selected parameters		
Average $R^2 Y_{scr}$:	0.04		
Average $Q^2 Y_{scr}$:	-0.13		
The y-rand R^2 range	-0.25-0.53		

Figure S1. The results of the Y-scrambling test (blue circle is the original model).

b) Y-scrambling for model described in eq.7