Electronic Supplementary Information

Combined toxicity of graphene oxide and wastewater to the green alga *Chlamydomonas reinhardtii*

Idoia Martín-de-Lucía¹, Marina C. Campos-Mañas² Ana Agüera², Francisco Leganés³, Francisca Fernández-Piñas³, Roberto Rosal^{1,*}

- ¹ Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
- ² CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
- ³ Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Spain
- * corresponding author: roberto.rosal@uah.es

CONTENTS:

Table S1. Wastewater characterization parameters

Table S2. Experimental design for determining toxicological interactions of GO and wastewater (WW) and their binary combinations for *C. reinhardtii* growth inhibition.

Table S3. Concentrations and physicochemical properties of pollutants detected in wastewater.

Figure S1. Percent recovery of wastewater pollutants after washing twice with methanol. (The results are shown only for compounds significantly adsorbed on GO nanoparticles; error bars represent standard deviation.)

Figure S2. Amount adsorbed (size of bubble proportional to the amount adsorbed in $\mu g/g$) as a function of D_{ow} , and K_{ow} (Table S3). The results are shown for compounds significantly adsorbed with respect to the experimental error. Compounds numbered as in Table S3. (a) 10 mg L⁻¹ GO, (b) 100 mg L⁻¹ GO.

Table S4. Dose-effect parameters for growth inhibition of *C. reinhardtii* after 72 h of exposure.

Table S5. Ecotoxicological effects reported in the literature for GO on photosynthetic microalgae.

Table S6. Dose-effect relationship parameters of GO, and wastewater (WW) individually and of their binary combinations on *C. reinhardtii* after 72 h of exposure.

Figure S3. Variations in inherent cell properties of *C. reinhardtii* cells after 72 h of exposure. Results are shown as percentage of variation of cell volume, intracellular complexity, and chlorophyll *a* fluorescence \pm SD with respect to control (assigned a value of 100%, indicated by the dashed line). Treatments with different letters are significantly different (Tukey's' HSD, p < 0.01).

Figure S4. Isobolograms representing constant ratio binary combinations for different joint affected fraction (f_a) . Vertical distances represent the wastewater dilution theoretically required to reach additivity. Points with the same colour represent experimental toxicity and error.

Figure S5. TEM micrographs of *C. reinhardtii* (A) exposed to 5 mg L⁻¹ GO in Tris-minimal phosphate (TP) medium at pH 6.5 and (B) in wastewater at EC_{50} GO + EC_{50} wastewater for 72 h.

Table S7. Experimental results related to the data points shown in Fig. 1.

Parameters	value	Ions	(mg/L)
pH	6.5*	Nitrate	0.38
Turbidity (NTU)	1.4	Chloride	125.5
Conductivity (mS/cm)	1.23 ± 0.03	Sulphate	143.7
COD (mg/L)	49.2 ± 1.2	Fluoride	< 0.80
NPOC (mg/L)	17.2 ± 0.5	Nitrite	< 0.10
Suspended solids (mg/L)	7.6	Bicarbonate	348.4
Alkalinity (mg CaCO ₃ /L)	286		
Total-P (mg/L)	0.1	Sodium	95.3
Total-N (mg/L)	2.3	Potassium	23.4
		Magnesium	14.3
		Calcium	49
		Ammonium	68.4

Table S1. Wastewater characterization parameters (0.45 μ m filtered samples).

* Measured just before runs.

Table S2.	Experimental	design for	determining	toxicolog	ical interac	ctions of GO) and
wastewate	er (WW) and t	heir binary	combination	s for C. re	einhardtii g	growth inhil	oition.

Constant ratio			Non-constant ratio				
Dilutions	Binary combinations GO+WW (1:0.3)		Dilutions	Dilutions	Binary combinations GO+WW (WW = $-0.3 GO + 0.3$)		
	GO (mg L ⁻¹)	WW (dil.)		w w	GO (mg L ⁻¹)	WW (dil.)	
$\begin{bmatrix} \frac{1}{2.9} \\ 0 \end{bmatrix} (EC_{50})$	0.36	0.11	$\left \frac{1}{1.2}_{(\text{EC}_{50})}\right $	$\frac{1}{6}_{(\text{EC}_{50})}$	0.86	0.05	
$\left \begin{array}{c} \frac{1}{1.7} \\ (EC_{50}) \end{array} \right $	0.61	0.19	$\left \frac{1}{1.5}_{(\text{EC}_{50})} \right $	$\frac{1}{3}_{(\text{EC}_{50})}$	0.69	0.11	
1 (EC ₅₀)	1.04	0.33	$\frac{1}{2}$ (EC ₅₀)	$\frac{1}{2}_{(EC_{50})}$	0.52	0.16	
1.7 (EC ₅₀)	1.76	0.55	$\frac{1}{3}_{(\text{EC}_{50})}$	$\frac{1}{1.5}(EC_{50})$	0.35	0.22	
2.9 (EC ₅₀)	2.99	0.94	$\frac{1}{6}$ (EC ₅₀)	$\frac{1}{1.2}$ (EC ₅₀)	0.17	0.27	

No.	Compound	Concentration (ng/L)	CAS Number	Molecular formula	$\log K_{ow}$	pKa	Acid/Base	log D _{ow} (pH 6.5)	Charge (+/-)	Main use
1	4-FAA*	6597 ± 326	1672-58-8	$C_{12}H_{13}N_3O_2$	-0.41	5.0	Weakly basic	-0.42	0.0	Metabolite of aminopyrine
2	Acesulfame	110 ± 2	33665-90-6	C ₄ H ₅ NO ₄ S	-1.33	5.7	Acidic	-1.39	-1.0	Sweetener
3	Amitriptyline	56 ± 9	50-48-6	$C_{20}H_{23}N$	4.92	9.4	Basic	2.00	1.0	Antidepressant
4	Antipyrine	2690 ± 337	60-80-0	$C_{11}H_{12}N_2O$	0.38	1.4	Weakly basic	0.38	0.0	Analgesic
5	Azithromycin	206 ± 9.4	83905-01-5	$C_{38}H_{72}N_2O_{12}$	4.02	8.7	Basic	1.76	1.0	Antibiotic
6	Bezafibrate	140 ± 12	41859-67-0	C ₁₉ H ₂₀ ClNO ₄	4.25	3.61	Acidic	1.38	-1.0	Antilipemic
7	Carbamazepine	297 ± 5.1	298-46-4	$C_{15}H_{12}N_2O$	2.45		Neutral	2.45	0.0	Antiepileptic
8	Carbamazepine epoxide	67 ± 1	36507-30-9	$C_{15}H_{12}N_2O_2$	1.58		Neutral	1.58	0.0	Metabolite of carbamazepine
9	Ciprofloxacin	177 ± 34	85721-33-1	$C_{17}H_{18}FN_3O_3$	0.28	6.1/8.7	Zwitterionic	n.a.	-1.0	Antibiotic
10	Citalopram	214 ± 2.4	59729-33-8	$C_{20}H_{21}FN_2O$	3.74	9.7	Basic	0.52	1.0	Antidepressant
11	Clarithromycin	164 ± 25	81103-11-9	C ₃₈ H ₆₉ NO ₁₃	3.16	9.0	Basic	0.65	1.0	Antibiotic
12	Diazepam	24 ± 2	439-14-5	C ₁₆ H ₁₃ ClN ₂ O	2.82	3.4	Weakly basic	2.82	0.0	Anxiolytic
13	Erythromycin	134 ± 2	114-07-8	C ₃₇ H ₆₇ NO ₁₃	3.06	8.9	Basic	0.64	1.0	Antibiotic
14	Fenofibric acid	172 ± 7	42017-89-0	C ₁₇ H ₁₅ ClNO ₄	4.00	3.1	Acidic	0.62	-1.0	Metabolite of fenofibrate
15	Furosemide	984 ± 30	54-31-9	$C_{12}H_{11}ClN_2O_5S$	2.03	3.8	Acidic	-0.65	-1.0	Antihypertensive
16	Gemfibrozil	2522 ± 49	25812-30-0	$C_{15}H_{22}O_3$	4.77	4.5	Acidic	2.79	-1.00	Antilipemic
17	Hydrochlorothiazide	2510 ± 85	58-93-5	$C_7H_8ClN_3O_4S_2$	-0.07	7.9/9.2	Basic	-4.23	1.00	Antihypertensive
18	Indomethacin	26 ± 5	53-86-1	C ₁₉ H ₁₆ ClNO ₄	4.27	4.5	Acidic	2.29	-1.00	Analgesic
19	Lidocaine	447 ± 64	137-58-6	$C_{14}H_{22}N_2O$	2.44	7.8	Basic	1.15	1.00	Anesthetic

Table S3. Concentrations and physicochemical properties of pollutants detected in wastewater.

No.	Compound	Concentration (ng/L)	CAS Number	Molecular formula	log K _{ow}	pKa	Acid/Base	log D _{ow} **	Charge (+/-)	Main use
20	Mepivacaine	40 ± 4	96-88-8	$C_{15}H_{22}N_{20}$	1.95	7.7	Basic	0.70	1.00	Anesthetic
21	Metoclopramide	49 ± 2	364-62-5	$C_{14}H_{22}CIN_3O_2$	2.62	9.3	Basic	-0.17	1.00	Antiemetic
22	Metoprolol	38 ± 2	37350-58-6	C ₁₅ H ₂₅ NO ₃	1.88	9.7	Basic	-1.34	1.00	β-blocker
23	Ofloxacin	472 ± 39	82419-36-1	C ₁₈ H ₂₀ FN ₃ O ₄	-0.39	6.1/8.2	Zwitterionic	n.a.	-1.0	Antibiotic
24	Paraxanthine	251 ± 36	611-59-6	$C_7H_8N_4O_2$	-0.22	10.8	Weakly basic	-0.22	0.00	Metabolite of caffeine
25	Pentoxifylline	275 ± 20	06/05/6493	$C_{13}H_{18}N_4O_3$	0.29	0.3	Basic	0.29	0.00	Vasodilator
26	Primidone	370 ± 3	125-33-7	$C_{12}H_{14}N_2O_2$	0.91	12.3	Weak acid	0.91	0.00	Antiepileptic
27	Ranitidine	857 ± 43	66357-35-5	$C_{13}H_{22}N_4O_3S$	0.27	2.3/8.2	Diprotic base	-1.46	1.00	Antiacid
28	Sucralose	2117 ± 157	56038-13-2	$C_{12}H_{19}Cl3O_8$	-1.00	11.8	Neutral	11.8	0.0	Sweetener
29	Sulfamethoxazole	576 ± 15	723-46-6	$C_{10}H_{11}N_3O_3S$	0.89	1.8/5.6	Amphiprotic	-0.04	-1.0	Antibiotic
30	Sulfapyridine	313 ± 34	144-83-2	$C_{11}H_{11}N_3O_2S$	0.35	2.3/8.4	Amphiprotic	0.35	-1.0	Antibiotic
31	Theophylline	235 ± 31	58-55-9	$C_7H_8N_4O_2$	-0.02	8.8	Basic	-2.35	1.0	Bronchodilator/ Vasodilator
32	Trimethoprim	602 ± 21	738-70-5	$C_{14}H_{18}N_4O_2$	0.91	7.1	Basic	0.20	1.0	Antibiotic
33	Venlafaxine	559 ± 51	93413-69-5	$C_{17}H_{27}NO_2$	3.20	9.4	Basic	0.28	1.0	Antidepressant

 Table S3 (cont.). Concentrations and physicochemical properties of pollutants contained in wastewater.

* NFAA = N-formyl-4-aminoantipyrine ** pH 6.5

Figure S1. Percent recovery of wastewater pollutants after washing twice with methanol. (The results are shown only for compounds significantly adsorbed on GO nanoparticles; error bars represent standard deviation.)

Figure S2. Amount adsorbed (size of bubble proportional to the amount adsorbed in $\mu g/g$) as a function of D_{ow} , and K_{ow} (Table S3). The results are shown for compounds significantly adsorbed with respect to the experimental error. Compounds numbered as in Table S3. (a) 10 mg L⁻¹ GO, (b) 100 mg L⁻¹ GO.

		GO	(mg L ⁻¹)		WW (effluent dilution)			
	EC _x	SD	CI _L 95%	CI _L 95%	EC _x	SD	CI _L 95%	CI _L 95%
EC ₂₀	0.035	0.004	0.027	0.042	0.109	0.006	0.097	0.121
EC ₅₀	1.036	0.055	0.926	1.145	0.325	0.007	0.311	0.340
EC ₈₀	30.9	3.1	24.8	36.9	0.969	0.040	0.888	1.050

Table S4. Dose-effect parameters for the growth inhibition of *C. reinhardtii* after 72 h of exposure.

Table S5. Ecotoxicological effects reported in the literature for GO on photosynthetic microalgae.

Organism	Size range	Exposure conditions	Toxicological effects	Reference
Chlorella vulgaris	Thickness: 0.8–1 nm Diameter: 1–5 µm Size distribution: 465–486 nm	0.01, 0.1, 1, and 10 mg L ⁻¹ for 8 days.	 Cell growth inhibition and decrease in chlorophyll content as the concentrations of GO increased. Generation of ROS and disrupted antioxidant enzymes. GO enveloped and entered algal cells, and damaged organelles (especially via plasmolysis and an increase in the starch grain number). 	Hu et al. ¹
	$ \begin{array}{c} \mbox{Thickness: } 0.8-1.2 \mbox{ nm} \\ \mbox{Lateral length: } 0.5-5 \mbox{ \mu m} \\ \mbox{Hydrodynamic diameter:} \\ \mbox{295-825 nm} \end{array} \ \begin{array}{c} 0.01, \ 0.1, \ 1, \ and \ 10 \ mg \\ \mbox{L}^{-1} \ for \ 96 \ h. \end{array} $		 Cell division was promoted at 24 h and then inhibited at 96 h. GO promoted the generation of ROS, loss of mitochondrial membrane potential, plasmolysis and increases in the number of starch grains and the number of lysosome. GO covered cell surface. 	Hu et al. ²
	Thickness: 0.1-1 nm $0.01, 0.1, 1, and 10 mg$ Lateral length: 1.5 μ m L^{-1} for 96 h.		 Inhibition of cell division. Increased intracellular ROS and mitochondrial membrane potential. Internalization of GO, damaged the cell ultrastructure, reduced cell permeability, and plasmolysis. 	Ouyang <i>et al.</i> ³
	Thickness: 1.02 ± 0.15 nm Lateral length: $0.5-5 \ \mu m$	0.1, 1 and 10 mg L ⁻¹ for 96 h	 Inhibition of cell division and chlorophyll <i>a</i> biosynthesis. Enhancement of ROS. Oxidative stress-induced membrane damage, and nutrient depletion. Cell plasmolysis. 	Hu et al. ⁴
Chlorella pyrenoidosa	Thickness: 2.1 nm	50, 100, 150, 200 mg	- Growth inhibition (EC ₅₀ 37.3 mg L^{-1}).	Zhao <i>et al.</i> ⁵

	Lateral size: 2 µm	L-1 for 96 h	- Increase of intracellular ROS and membrane damage.	
Picochlorum sp.	Thickness: 3-6 nm	0.5, 1, 2.5, and 5.0 mg L^{-1} for 32 days	 Decrease in viable cell number and chlorophyll <i>a</i> concentration. GO formed a coating layer around algal cells and penetrated the cells without a significant change in their structure. 	Hazeem et al.6
Raphidocelis subcapitata	Thickness: 3.5 nm. Hydrodynamic diameter: 110 nm	0.5, 2, 5, 10, 20, 50, 70, and 100 mg L ⁻¹ for 96 h.	 Growth inhibition (EC₅₀ 20 mg L⁻¹). Decrease in percentage of the chlorophyll autofluorescence intensity. Oxidative stress and membrane integrity damage. 	Nogueira <i>et al.</i> ⁷
Scenedesmus obliquus	Thickness: 0.7 nm. Size: 1-10 μm.	1, 2, 4, 8, 16, 32, and 64 mg L^{-1} for 96 h (Combined exposure to GO and Cu^{2+} for 96 h and 12 days.	 Growth inhibition (EC₅₀ 21.2 ± 0.5 mg L⁻¹). Antagonistic effects between GO and copper. GO reduce ecotoxicity of Cu²⁺ at low and environmentally relevant concentrations. 	Hu <i>et al</i> . ⁸

- 1. X. Hu, K. Lu, L. Mu, J. Kang and Q. Zhou, Carbon, 2014, 80, 665-676.
- 2. X. Hu, S. Ouyang, L. Mu, J. An and Q. Zhou, Environmental Science & Technology, 2015, 49, 10825-10833.
- 3. S. Ouyang, X. Hu and Q. Zhou, ACS Applied Materials & Interfaces, 2015, 7, 18104-18112.
- 4. X. Hu, Y. Gao and Z. Fang, Carbon, 2016, 109, 65-73.
- 5. J. Zhao, X. Cao, Z. Wang, Y. Dai and B. Xing, *Water Research*, 2017, **111**, 18-27.
- 6. L. J. Hazeem, M. Bououdina, E. Dewailly, C. Slomianny, A. Barras, Y. Coffinier, S. Szunerits and R. Boukherroub, *Environmental Science and Pollution Research*, 2017, **24**, 4144-4152.
- 7. P. F. M. Nogueira, D. Nakabayashi and V. Zucolotto, Aquatic Toxicology, 2015, 166, 29-35.
- 8. C. Hu, N. Hu, X. Li and Y. Zhao, *Ecotoxicology and Environmental Safety*, 2016, 132, 360-365.

	Drug combo	Dose-Effect parameters			
	Drug combo	D _m	m	r	
	GO	1.31	0.61	0.953	
Constant ratio	WW	0.34	1.04	0.970	
	GO+WW	1.35	1.34	0.976	
	GO	1.64	0.64	0.923	
Non-constant ratio	WW	0.62	0.54	0.932	
	GO+WW	1.16	2.48	0.964	

Table S6. Dose-effect relationship parameters of GO, and wastewater (WW) individually and of their binary combinations on *C. reinhardtii* after 72 h of exposure.

The parameters m, D_m and r are the antilog of x-intercept, the slope and the linear correlation coefficient of the median-effect plot, which signifies the shape of the dose-effect curve, the potency (EC₅₀), and conformity of the data to the mass-action law, respectively. m was the Hill coefficient used to determine the shape of the dose-response curve, hyperbolic (m = 1), sigmoidal (m > 1) or negative sigmoidal (m < 1); also shown in the table, linear regression correlation coefficients (r-values) of the median-effect plots were > 0.90 in all cases, indicating the conformity of the data to the median-effect principle.

Figure S3. Variations in inherent cell properties of *C. reinhardtii* cells after 24 and 72 h of exposure. Results are shown as percentage of variation of cell volume, intracellular complexity, and chlorophyll *a* fluorescence \pm SD with respect to control (assigned a value of 100%, indicated by the dashed line). Treatments with different letters are significantly different (Tukey's' HSD, p < 0.01).

Figure S4. Isobolograms representing constant ratio binary combinations for different joint affected fraction (f_a) . Vertical distances represent the wastewater dilution theoretically required to reach additivity. Points with the same colour represent experimental toxicity and error.

Figure S5. TEM micrographs of *C. reinhardtii* (A) exposed to 5 mg L⁻¹ GO in Tris-minimal phosphate (TP) medium at pH 6.5 and (B) in wastewater at EC_{50} GO + EC_{50} wastewater for 72 h.

Constant ratio)				
Data point	GO (mg/L)	WW dil.	f _a	CI	CI SD
1	0.358	0.112	0.173	5.20	0.71
2	0.609	0.191	0.379	1.96	0.40
3	1.036	0.325	0.499	1.73	0.31
4	1.761	0.552	0.685	1.16	0.25
5	2.994	0.939	0.799	0.98	0.23
Non-constant	ratio			·	
Data point	GO (mg/L)	WW dil.	f _a	CI	CI SD
1	0.173	0.271	0.087	37.8	4.9
2	0.345	0.217	0.123	18.9	4.8
3	0.518	0.163	0.192	6.96	1.37
4	0.691	0.108	0.271	3.08	0.43
5	0.863	0.054	0.350	1.56	0.21

 Table S7. Experimental results related to the data points shown in Fig. 1.

