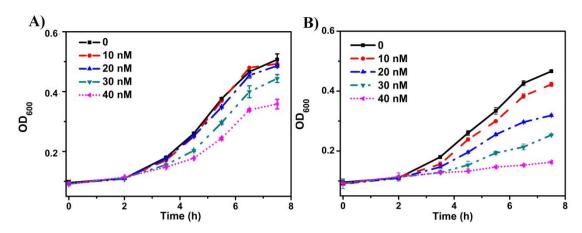
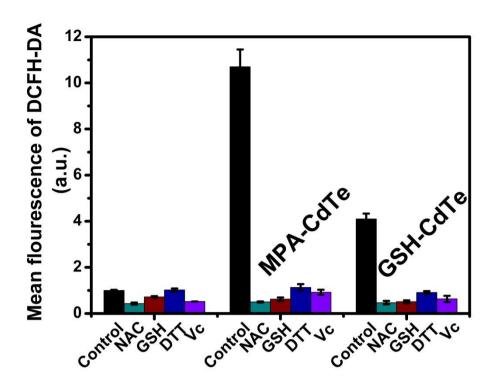

Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

New Aspects of the Environmental Risks of Quantum Dots: Prophage Activation


Juan Xu¹, Ying-Ying Wang¹, Ren Yan¹, Lian-Jiao Zhou¹, Yu-zhu Liu¹, Feng-Lei Jiang¹,*, Thomas Maskow²,* Yi Liu^{1,3,4},*

- ¹ State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- ² UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
- ³ Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- ⁴ College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, P. R. China


*Corresponding Author.Tel: 86-27-68756667. Fax: 86-27-68754067. Email address: yiliuchem@whu.edu.cn, thomas.maskow@ufz.de, fljiang@whu.edu.cn.

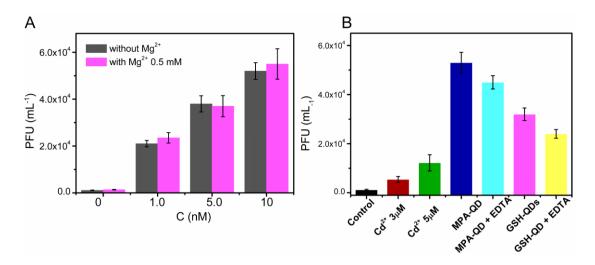

Figure S1. Dependency of the metabolic heat production rate of *E. coli* with different ratio of λ + at the same concentration of Mitomycin C (15 μ M, MMC).

Figure S2. (A) Growth curves of normal *E. coli* (λ -) treated with GSH-CdTe QDs. (B) Growth curves of mixture *E. coli* (λ - : λ + = 9 : 1) treated with GSH-CdTe QDs.

Figure S3. Treatments of antioxidants suppress the accumulation of reactive oxygen species (ROS) formation of MPA-CdTe and GSH-CdTe QDs.

Figure S4 (A) Prophage activation of MPA-CdTe QDs in medium without and with Mg^{2+} . (B) Protective effect of EDTA on CdTe QDs against prophage activation in medium without Mg^{2+} .

Table S1. Parameters of *E. coli* growth at different concentrations of GSH-QDs.

E. coli	C (µM)	$\mathbf{k_1}(\mathbf{h}^{-1})$	R	$P_{m}(\mu W)$	$\mathbf{Q}_{total}\left(\mathbf{J}\right)$
	0	1.012	0.998	304.8	11.2
Lambda-	0.1	0.932	0.992	322.4	10.7
	0.4	1.160	0.996	319.1	9.6
	0.8	0.943	0.992	296.4	10.5
	1.6	1.072	0.995	332.0	11.2
Mixture	0	0.911	0.991	325.4	10.4
	0.1	0.775	0.992	310.6	10.5
	0.4	0.644	0.995	287.0	10.1
	0.8	0.621	0.997	278.2	10.7
	1.6	0.571	0.993	256.0	10.3

Table S2. Parameters of *E. coli* growth at different concentrations of MPA-QDs.

E. coli	C (µM)	k ₁ (h ⁻¹)	R	$P_{m}(\mu W)$	$Q_{total}(J)$
Lambda-	0	0.925	0.996	331.4	10.9
	0.2	0.879	0.993	327.1	10.1
	0.4	0.921	0.996	327.4	10.6
	0.6	0.913	0.994	323.4	10.4
	0.8	0.859	0.999	319.8	10.0
Mixture	0	0.857	0.992	341.8	11.6
	0.2	0.679	0.996	343.6	11.9
	0.4	0.643	0.992	304.8	11.1
	0.6	0.631	0.999	250.2	11.4
	0.8	0.602	0.994	252.7	11.3