1	Supporting Information
2	Experimental and theoretical investigations on Se(IV) and Se(VI) adsorption to UiO-66-
3	based metal-organic frameworks
4	Jingmiao Wei ^a , Wei Zhang ^b , Weiyi Pan ^c , Chaoran Li ^d and Weiling Sun * ^a
5	^a College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of
6	Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
7	^b Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program,
8	Michigan State University, East Lansing, Michigan 48824, United States
9	^c Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of
10	Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
11	^d College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
12	

13 Preparation of adsorbents

To synthesize UiO-66, 0.204 g of 1,4-benzenedicarboxylic acid (H₂BDC) was dissolved in 9.4 mL 14 15 N,N-dimethylformamide (DMF) under vigorous stirring. After 15 minutes, 2.3 mL of CH₃COOH was added dropwise to the solution at a rate of ~1 drop per second to accelerate the formation of 16 17 crystals. Then, 0.318 g ZrCl₄ was dissolved in 9.4 mL DMF under vigorous stirring for 30 minutes.¹ Afterwards, the two solutions were mixed in a beaker and vigorously stirred for another 18 20 minutes. The obtained mixture was sealed into a Teflon-lined autoclave and maintained in a 19 pre-heated oven at 120 °C for 24 h. After cooling to room temperature, the obtained crystals were 20 centrifugalized at 5000 rpm for 30 min and immersed in 100 mL of ethanol for 5 days. The ethanol 21 was replaced 3 times per day. After that, the crystals were separated from the ethanol by 22 centrifuging at 5000 rpm for 30 min. Finally, the synthesized material was freeze-dried at -60 °C 23 for 3 h in vacuum. To synthesize UiO-66-NH2, the same method was used, but NH2-BDC (0.2466 24 g) was used in place of H_2BDC^2 . 25

26 Data analysis

27 Adsorption kinetics

28 The adsorption amount of Se(IV) or Se(VI), Q_e (mg/g), was calculated as follows:³

$$Q_{\rm e} = \frac{C_0 - C_{\rm e}}{m} \tag{S1}$$

30 where C_0 (mg/L) and C_e (mg/L) are the initial and final concentrations of Se, respectively. *m* (g/L) 31 is the dosage of MOFs.

32 The experimental data were described by the widely used pseudo-first order and pseudo-

33 second order models, as shown in Eq. (S2) and (S3), respectively.⁴⁻⁶

34
$$q_t = q_e (1 - \frac{1}{e^{k_t t}})$$
 (S2)

35
$$q_{t} = \frac{t}{\frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}}$$
 (S3)

36 where q_t is the amount of Se adsorbed at time t (mg/g), q_e is the equilibrium adsorption amount 37 (mg/g), k_1 is the pseudo-first order rate constant (1/min), and k_2 is the pseudo-second order rate 38 constant (g/(mg·min)).

The intra-particle diffusion model in Eq. (S4) was used to determine whether intraparticle
diffusion was the rate-limiting step:⁷

41
$$q_{\rm t} = k_{\rm p} t^{0.5} + C$$
 (S4)

42 where k_p is the intraparticle diffusion rate constant (mg/(g·min^{0.5})), *C* is the instaneous adsorption 43 amount on the external surface and a constant related to the boundary layer thickness. If the rate-44 limiting step is the intra-particle diffusion, the plot of q_t against the square root of time should be 45 a straight line and pass through the origin (*C* = 0). Otherwise, the deviation of the plot from the 46 linearity indicates the rate-limiting step should be the boundary layer (film) diffusion.

47 The Elovich model in Eq. (S5) was used to describe the kinetic experiments:⁸

48
$$\frac{\mathrm{d}\mathbf{q}_t}{\mathrm{d}t} = a \exp(-bq_t) \tag{S5}$$

49 where *a* is the initial adsorption rate (mg/g min), *b* is a constant related to the surface coverage 50 (g/mg). When $q_t \rightarrow 0$, $dq_t/dt \rightarrow a$, given that $q_t = 0$ at t = 0, if t? t_0 , the equation S5 becomes S6:

51
$$aq_t = \frac{1}{b}\ln(ab) + \frac{1}{b}\ln t$$
(S6)

52 the equation S6 can be simplified to S7:

53
$$q_t = A + 2.303B \log t$$
 (S7)

54 where *A* and *B* are two constants represent $\frac{1}{b}\ln(ab)$ and $\frac{1}{b}$, respectively.

55

56 Adsorption isotherm

57 Adsorption isotherms were fitted using the Langmuir and Freundlich models.⁹

58
$$Q_{\rm e} = Q_{\rm max} \frac{K_{\rm L} C_{\rm e}}{1 + K_{\rm L} C_{\rm e}}$$
(S8)

59 where Q_{max} (mg/g) is the adsorption capacity and K_{L} (L/mg) is the Langmuir adsorption affinity

60 parameter.

 R_L is a constant to describe the adsorption in Langmuir model.⁹

62
$$R_L = \frac{1}{1 + K_L C_0}$$
(S9)

63 Freundlich models⁸:

64
$$Q_{\rm e} = Q_{\rm max} \frac{K_{\rm L} C_{\rm e}}{1 + K_{\rm L} C_{\rm e}}$$
(S10)

65 where $K_{\rm F}$ (mg/g (mg/L)^{-1/n}) is the Freundlich distribution coefficient, and 1/n is the empirical 66 Freundlich constant describing the adsorption intensity or surface heterogeneity.⁹

Sample	C (%)	O (%)	Zr (%)	N (%)	Se (%)
UiO-66	59.61	35.63	4.76		
UiO-66-NH ₂	57.89	33.14	3.98	4.99	
Se(IV)-adsorbed UiO-66	51.09	40.91	5.19		2.81
Se(VI)-adsorbed UiO-66	54.89	40.61	4.19		0.31
Se(IV)-adsorbed UiO-66-NH ₂	52.00	35.84	4.43	5.53	2.20
Se(VI)-adsorbed UiO-66-NH ₂	57.89	32.95	3.92	5.00	0.24

68	Table S1	The XPS	Elemental	Analysis	of the MOFs
				-1	

		C 1s	(%)			O 1s (%)		Zr 3	d (%)	N	ls (%)
	C-C/C=C	C-N	C-0	-COO	O-Zr	O=C	0 - C	Zr 3d5/2	Zr 3d3/2	Ph NH ₂ N	I Ph NH ₃ ⁺ N
	284.8 eV	284.9 eV	286.2 eV	288.7 eV	7 530.2 eV	531.8 eV	533.1 eV	182.7 eV	185.1 eV	399.2 eV	400.4 eV
UiO-66	68.37		11.15	20.49	16.13	77.09	6.78	61.09	38.91		
UiO-66-NH ₂	46.20	5.98	22.15	25.67	11.89	76.55	11.56	60.59	39.41	31.40	68.60
Se(IV)-adsorbed	68 43		10 90	20.67	12 37	73 43	14 20	53 93	46 07		
UiO-66						,					
Se(VI)-adsorbed	74 55		7.06	18 39	10 99	63 17	25.83	62.37	37.63		
UiO-66	11.00		7.00	10.59	10.77	05.17	23.05	02.57	57.05		
Se(IV)-adsorbed	59.40		19.35	21.26	12.32	73.63	14.05	54.58	45.42	44.74	55.26
UiO-66-NH ₂			- /			,					
Se(VI)-adsorbed	61 51		17.63	20.86	13 29	68 16	18 54	60 57	39 43	46 83	53 17
UiO-66-NH ₂	01.01		17.05	20.00	10.29	00.10	10.01	00.07	57.15	10.05	,

70 **Table S2** The XPS Peak Composition Analysis of the MOFs

Combatas	s Sorbents	$q_{ m e,exp}^{ m a}$.	Pseudo-first-order		Pseudo-second-order		In	Intra-particle			Elovich model			
Sorbates			q_{e}	k_1^{b}	R ²	$q_{ m e}$	k_2^{c}	R ²	k _p	С	R ²	А	В	R ²
	UiO-66	29.1	3.51	0.0033	0.629	28.0	0.0325	0.901	0.253	23.4	0.592	20.4	1.43	0.878
Se(1V)	UiO-66-NH ₂	25.7	2.03	0.0020	0.223	25.1	0.0354	0.977	0.197	21.2	0.445	18.5	1.20	0.775
	UiO-66	5.88	0.597	0.0036	0.360	5.84	0.0555	0.999	0.042	4.93	0.454	4.93	0.0180	0.454
Se(VI)	UiO-66-NH ₂	3.16	0.687	0.0014	0.298	3.08	0.0472	0.996	0.013	2.70	0.523	2.70	0.00560	0.523

72 Table S3 Kinetic Parameters for Se(IV) and Se(VI) Adsorption by MOFs

73 a mg/g, b 1/min, c g/(mg·min), and d mg/(g·min^{0.5})

	Carbotas	Contracts		Freundlich					
	Sordates	Sordents	$Q_{\max}{}^{\mathrm{a}}$	$k_{ m L}{}^{ m b}$	\mathbb{R}^2	R_L	$K_{ m F}{}^{ m c}$	1/n	R ²
		UiO-66	59.9	0.223	0.961	0.0360-0.473	13.1	0.395	0.908
Original	Se(1V)	UiO-66-NH ₂	26.8	0.356	0.993	0.0229-0.360	7.38	0.352	0.962
Original	S ₂ (VII)	UiO-66	37.3	0.0299	0.938	0.218-0.870	1.50	0.690	0.986
	Se(VI)	UiO-66-NH ₂	11.9	0.103	0.994	0.0749-0.660	1.63	0.471	0.954
	$\mathbf{S}_{\mathbf{C}}(\mathbf{W})$	UiO-66	0.0426	0.404	0.941		0.0142	0.306	0.955
BET surface area	Se(1V)	UiO-66-NH ₂	0.0399	0.358	0.960		0.0140	0.269	0.962
normalized	Se(VI)	UiO-66	0.0364	0.0247	0.984		0.0020	0.560	0.963
		UiO-66-NH ₂	0.0186	0.0913	0.981		0.0038	0.350	0.939

Table S4 Parameters of the Isotherm Models for Se(IV) and Se(VI) adsorption by MOFs

 a mg/g, b L/mg, and c mg/g (mg/L)^-1/n

	A 1 1 /	Adsorption	Initial	Adsorbent	
Adsorbents	Adsorbates	capacity (mg/g)	concentration of Se (mg/L)	concentration (g/L)	рН
CuFe ₂ O ₄ ⁹	Se(IV & VI)	14.1 & 5.97	1-25	0.4	7.4
Coal fly ash/cement composite ¹¹	Se(IV & VI)	15.8 & 38.8	3.95-118.5	20	11
$MnFe_2O_4NM^{12}$	Se(IV & VI)	6.6 & 0.8	0.25-10	2.5	4
Magnetic nanoparticle– graphene oxide composites ¹³	Se(IV & VI)	23.8 & 15.1	0.05-500	1	6-9
n-Al ₂ O ₃ impregnated chitosan beads ¹⁴	Se(IV & VI)	11.08 &20.11	1	1.75	6.7-6.8
Eggshell membranes ¹⁵	Se	0.16	0.8	5	8.5
Chitosan– montmorillonite composite ¹⁶	Se(IV & VI)	18.4	0.11-10	0.5	4-7
MBHB incorporated into mesoporous silica ¹⁷	Se(IV)	93.56	2.02-74.16	1.0	1.5
DSDH incorporated into mesoporous silica ¹⁸	Se(IV)	111.12	1.02-70.24	0.5	2.0
into mesoporous inorganic silica ¹⁹	Se(IV)	103.73	1-80	0.5	2.5
Nano-magnetite ²⁰	Se(IV & VI)	6	0.1-5	0.1	4
Fe ₃ O ₄ nanomaterials ²¹	Se(IV & VI)	2.38 & 2.37	0.25-10	2.5	4
Nano TiO ₂ colloid ²²	Se(IV)	27.1	0.1-1.5	2	6-7
Mg–Al–CO ₃ layered double hydroxide ²³	Se(IV & VI)	160 & 90	5-500	2	5
Mg–Fe–CO ₃ layered double hydroxide ²⁴	Se(IV)	32.05	30-70	1	6
nα-Fe ₂ O ₃ synthesized from FeCl ₃ ²⁵	Se(IV & VI)	40.2 &15.6		0.005	5.5-6.6
Fe–Mn hydrous oxides ²⁶	Se(IV & VI)	41.02 & 19.84	5-500	2	4
Nano-TiO ₂ ²⁷	Se(IV)	8.46	10-54	5	5
NU-1000 ²⁸	Se(IV & VI)	95&85	100	2	6
UiO-66-HCl ²⁹	Se(VI)	86.8	150	1	6.8
Uncultivated soils under Cerrado biome ³⁰	Se(VI)	0.008	0-2	100	5.5
UiO-66	Se(IV & VI)	59.9 & 37.3	5-120	0.5	6
UiO-66-NH ₂	Se(IV & VI)	26.8 & 11.9	5-120	0.5	6

77 Table S5 Comparison of Se(IV) and Se(VI) Adsorption Capacity for Various Adsorbents

Species	E (Hartree)		Adsorption sites	E (Hartree)	Binding energy (kJ/mol)	Bond length/Dist ance (Å)
UiO-66	-6842.00					
SeO ₃ ^{2–}		A	O ⁻ Zr-O ⁻ -Se=O	-7439.81	-135.45	2.03
	-597.76	С	benzene -O=Se-O-	-7439.77	-27.36	
		D	benzene-H —O ⁻ -Se=O	-7439.78	-70.83	2.15/2.07
HSeO ₃ -		A	OH Zr-O-Se=O	-7440.28	-59.36	2.20
	-598.26	В	Cr-O−HO-Se=O	-7440.27	-48.84	2.21
		С	OH benzene —O=Se-O-	-7440.27	-26.40	
		D	of the second se	-7440.27	-34.97	2.65/2.18

79 Table S6 Binding Energy of Se(IV) Adsorbed on UiO-66 and UiO-66-NH₂

	E				Binding	Bond
Species	E (II.e.rtrace)		Adsorption sites	E (Hartree)	energy	length/Dist
	(Hartree)				(kJ/mol)	ance (Å)
H ₂ SeO ₃		A	OH Zr-OH-Se=O	-7440.72	-11.36	3.37
		В	OH Zr-O-HO-Se=O	-7440.72	-29.79	1.77/1.76
	-598.71	С	OH benzene —O=Se-OH	-7440.71	-4.96	
		D	oH benzene-H —OH-Se=O	-7440.71	-2.93	2.97/2.99
SeO4 ²⁻	-673.00	А		-7515.01	-50.58	2.10
UiO-66- NH ₂	-6897.37					
SeO ₃ ²⁻	507 76	A	Q- Zr-OSe=O	-7495.19	-141.89	2.05
	-397.76	С	benzene –O=Se-O-	-7495.14	-13.12	

Species	E (Hartree)		Adsorption sites	E (Hartree)	Binding energy (kJ/mol)	Bond length/Dist ance (Å)
		D	benzene-H —OSe=O	-7495.16	-67.61	2.26/2.28
		E	H O- benzene-N-H OSe=O	-7495.15	-57.50	2.88
		A	OH Zr-O-Se=O	-7495.66	-70.60	2.21
		В	O- Zr-O-HO-Se=O	-7495.65	-39.54	3.37
HSeO ₃ -	-598.26	С	OH benzene —O=Se-O-	-7495.64	-28.61	
		D	OH benzene-H —OSe=O	-7495.65	-36.52	2.54/2.45
		Е	H OH benzene-N-H OSe=O	-7495.65	-47.63	2.90

Species	Е		Adsorption sites	E (Hartree)	Binding energy	Bond length/Dist
1	(Hartree)			× ,	(kJ/mol)	ance (Å)
H ₂ SeO ₃		A	OH Cr-OH-Se=O	-7496.09	-20.00	3.74
		В	OH Zr-O-HO-Se=O	-7496.09	-24.38	1.82/3.36
	-598.71	С	OH benzene —O=Se-OH	-7496.09	-5.32	
		D	OH benzene-H —OH-Se=O	-7496.09	-8.43	3.05/3.15
		E	H H OH benzene-N-H —O-Se=O	-7496.09	-14.99	2.97
SeO4 ²⁻	-673.00	A		-7570.39	-62.07	2.21

82 Fig. S1 N_2 adsorption-desorption isotherm plot (a) and BJH pore size distribution (b) of UiO-66

Fig. S2 C 1s (a), O 1s (b) XPS spectra of UiO-66 and UiO-66-NH₂ and N1s (c) XPS spectra of UiO66-NH₂.

90 Fig. S3 Adsorption kinetics of Se(IV) (a) and Se(VI) (b) to UiO-66 and UiO-66-NH₂.

92 Fig. S4 Species distribution of (a) Se(IV) and (b) Se(VI) as a function of pH.

96 Fig. S5 Optimized geometry patterns of SeO_3^{2-} , $HSeO_3^{-}$, H_2SeO_3 , and SeO_4^{2-} .

98 Fig. S6 Size of H₂SeO₃ molecule compared to the distances of the hole of UiO-66.

100 Fig. S7 Effect of coexisting ions on the adsorption of Se(IV) (a and b) and Se(VI) (c and d) to

101 UiO-66 and UiO-66-NH₂.

102

104

103 **Fig. S8** Molecular structure for $H_2PO_4^-$ adsorbed on UiO-66.

107 Notes and References

- 108 1 J. Ren, H. W. Langmi, B. C. North, M. Mathe and D. Bessarabov, Modulated synthesis of
- 109 zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications, Int. J.
- 110 *Hydrogen Energ.*, 2014, **39**, 890-895.
- 111 2 S. J. Garibay and S. M. Cohen, Isoreticular synthesis and modification of frameworks with
- 112 the UiO-66 topology, *Chem. Commun.*, 2010, **46**, 7700-7702.
- 113 3 C. Wu, Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and
- 114 thermodynamics, J. Hazard. Mater., 2007, 144, 93-100.
- 115 4 S. Lagergren, About the theory of so-called adsorption of soluble substances, *Handl.*, 1898,
 116 24, 1-39.
- 117 5 Y. S. Ho, D. J. Wase and C. F. Forster, Kinetic studies of competitive heavy metal adsorption
- 118 by sphagnum moss peat, *Environ. Technol.*, 1996, **17**, 71-77.
- 119 6 Y. Ho and G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss
- 120 peat, Water Res., 2000, **34**, 735-742.
- 121 7 W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng.
- 122 Div. Am. Soc. Civ. Eng., 1963, 89, 31-60.
- 123 8 S. Senthilkumaar, P. Kalaamani, K. Porkodi, P. R. Varadarajan and C. V. Subburaam,
- 124 Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared
- from agricultural waste, *Bioresource Technol.* 2006, **97**, 1618-1625.
- 126 9 W. Sun, W. Pan, F. Wang and N. Xu, Removal of Se(IV) and Se(VI) by MFe₂O₄ nanoparticles

- 127 from aqueous solution, *Chem. Eng. J.*, 2015, **273**, 353-362.
- 128 10 X. Wu, B. Xiao, R. Li, C. Wang, J. Huang and Z. Wang, Mechanisms and factors affecting
- sorption of microcystins onto natural sediments, *Environ. Sci. Technol.*, 2011, **45**, 2641-2647.
- 130 11 W. Sun, J. E. Renew, W. Zhang, Y. Tang and C. Huang, Sorption of Se(IV) and Se(VI) to
- coal fly ash/cement composite: Effect of Ca²⁺ and high ionic strength, *Chem. Geol.*, 2017, 464,
 76-83.
- 133 12 C. M. Gonzalez, J. Hernandez, J. G. Parsons and J. L. Gardea-Torresdey, A study of the
- removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide
- 135 nanomaterial and ICP-MS, *Microchem. J.*, 2010, **96**, 324-329.
- 136 13 Y. Fu, J. Wang, Q. Liu and H. Zeng, Water-dispersible magnetic nanoparticle-graphene oxide

137 composites for selenium removal, *Carbon*, 2014, **77**, 710-721.

- 138 14 J. S. Yamani, A. W. Lounsbury and J. B. Zimmerman, Adsorption of selenite and selenate by
 nanocrystalline aluminum oxide, neat and impregnated in chitosan beads, *Water Res.*, 2014, 50,
 373-381.
- 141 15 L. D. Mafu, T. Msagati and B. B. Mamba, Adsorption studies for the simultaneous removal
- 142 of arsenic and selenium using naturally prepared adsorbent materials, Int. J. Environ. Sci. Te.,
- 143 2014, **11**, 1723-1732.
- 144 16 N. Bleiman and Y. G. Mishael, Selenium removal from drinking water by adsorption to
- chitosan-clay composites and oxides: batch and columns tests, *J. Hazard. Mater.*, 2010, 183,
 590-595.

- 147 17 M. R. Awual, M. M. Hasan and M. A. Khaleque, Efficient selenium(IV) detection and
 removal from water by tailor-made novel conjugate adsorbent, *Sensor. Actuat. B: Chem.*, 2015,
 209, 194-202.
- 150 18 M. R. Awual, T. Yaita, S. Suzuki and H. Shiwaku, Ultimate selenium(IV) monitoring and
- removal from water using a new class of organic ligand based composite adsorbent, *J. Hazard*. *Mater.*, 2015, **291**, 111-119.
- 153 19 M. R. Awual, M. M. Hasan, T. Ihara and T. Yaita, Mesoporous silica based novel conjugate
- adsorbent for efficient selenium(IV) detection and removal from water, Micropor. Mesopor.
- 155 *Mat.*, 2014, **197**, 331-338.
- 156 20 X. Wei, S. Bhojappa, L. Lin and R. C. Viadero Jr, Performance of nano-magnetite for removal
- 157 of selenium from aqueous solutions, *Environ. Eng. Sci.*, 2012, **29**, 526-532.
- 158 21 C. M. Gonzalez, J. Hernandez, J. R. Peralta-Videa, C. E. Botez, J. G. Parsons and J. L. Gardea-
- 159 Torresdey, Sorption kinetic study of selenite and selenate onto a high and low pressure aged
- 160 iron oxide nanomaterial, J. Hazard. Mater., 2012, **211**, 138-145.
- 161 22 J. Fu, X. Zhang, S. Qian and L. Zhang, Preconcentration and speciation of ultra-trace Se(IV)
- 162 and Se(VI) in environmental water samples with nano-sized TiO₂ colloid and determination by
- 163 HG-AFS, Talanta, 2012, 94, 167-171.
- 164 23 N. Chubar, EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-
- 165 gel generated Mg-Al-CO₃ layered double hydroxide with very labile interlayer anions, *J. Mater.*
- 166 *Chem. A*, 2014, **2**, 15995-16007.

- 167 24 J. Das, B. S. Patra, N. Baliarsingh and K. M. Parida, Calcined Mg-Fe-CO₃ LDH as an 168 adsorbent for the removal of selenite, *J. Colloid Interf. Sci.*, 2007, **316**, 216-223.
- 169 25 A. W. Lounsbury, J. S. Yamani, C. P. Johnston, P. Larese-Casanova and J. B. Zimmerman,
- 170 The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium
- 171 adsorption capacity, J. Hazard. Mater., 2016, **310**, 117-124.
- 172 26 M. Szlachta and N. Chubar, The application of Fe-Mn hydrous oxides based adsorbent for
- removing selenium species from water, *Chem. Eng. J.*, 2013, **217**, 159-168.
- 174 27 L. Zhang, N. Liu, L. Yang and Q. Lin, Sorption behavior of nano-TiO₂ for the removal of
- selenium ions from aqueous solution, J. Hazard. Mater., 2009, **170**, 1197-1203.
- 176 28 A. J. Howarth, M. J. Katz, T. C. Wang, A. E. Platero-Prats, K. W. Chapman, J. T. Hupp and
- 177 O. K. Farha, High Efficiency adsorption and removal of selenate and selenite from water using
- 178 metal-organic frameworks, J. Am. Chem. Soc., 2015, 137, 7488-7494.
- 179 29 J. Li, Y. Liu, X. Wang, G. Zhao, Y. Ai, B. Han, T. Wen, T. Hayat, A. Alsaedi and X. Wang,
- 180 Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks:
- 181 Effect of defects and ligands, *Chem. Eng. J.*, 2017, **330**, 1012-1021.
- 182 30 J. Lessa, A. M. Araujo, G. Silva, L. Guilherme and G. Lopes, Adsorption-desorption reactions
- of selenium(VI) in tropical cultivated and uncultivated soils under Cerrado biome, *Chemosphere*, 2016, 164, 271-277.