Supplemental information of

Estuary on a chip: unexpected results for nanoparticles fate and transport

Julien Gigault^{1*}, Marianne Balaresque¹, Hervé Tabuteau^{*2},

¹Laboratoire Géosciences Rennes, UMR6118 CNRS/Université de Rennes1, 263 Av. Général Leclerc, 35000 Rennes *julien.gigault@univ-rennes1.fr ²Institut de Physique de Rennes, UMR6251 CNRS/Université Rennes 1, 263 Av. Général Leclerc, 35000 Rennes *<u>herve.tabuteau@univ-rennes1.fr</u>

Figure S1: Size distribution of nC_{60} obtained by DLS using Cumulants (grey) and SBL (yellow) algorithms as described in the experimental and method sections in the main text.

Figure S2: (top) Measured salinity gradient across the width of the microfluidic device. (middle) Absorbance spectrum of the $30 \text{ g } L^{-1}$ NaCl stock solution doped with the patent blue, used to calibrate the final average NaCl concentration at the two MD outlets (A_{out} and B_{out}). (bottom) Absorbance Pic at 638 nm for various salt concentration.

Figure S3 : Size distribution and the autocorrelation function (ACF) of the nC60 characterized by DLS in the collection vials localized at the outlets A_{out} and B_{out} in red and blue, respectively. The dashed-line and the solid-line correspond to the size distibutions obtained by the Cumulants and SBL alrogithm, respectively.

In situ DLS remote head measurement configuration

Figure S4: Principle of the in-situ DLS measurement.